Kevin McCluney

Dr. Kevin E. McCluney

Ph. D., Arizona State University   

Office:    451D Life Sciences Building
Phone:   1-419-372-2634

Research: Global Change in Terrestrial and Aquatic Ecosystems, Animal Ecology, Food Webs, Community Physiological Ecology, Urban Ecology, Climate Change, Water Quality, Isotopes

McCluney Lab Webpage, ResearchGate


Research Interests:

The McCluney Lab studies how human alteration of environmental factors influences the dynamics of animals in terrestrial and aquatic food webs and ecosystems using integrative approaches. Our work investigates basic ecological questions that have importance for achieving sustainable environmental management in a changing world. Our key research areas include:

1. Terrestrial Water Webs: Studying the direct effects of animal water balance (sources and losses) on trophic interactions and food webs (which we have named "water webs"). For instance, previous work has shown that spiders and crickets will "drink" their food under dry conditions, consuming large amounts in order to meet water requirements rather than energy or nutrients.

2. Water Quantity and Quality Effects on Aquatic-Terrestrial Linkages: Studying how changes in water quantity and quality influences the reciprocal feedbacks between adjacent aquatic and terrestrial ecosystems. For instance, we have shown strong effects of river drying on streamside animals. We are also investigating the influence of variation in macronutrients, like phosphate, or trace chemicals, like caffeine, on rates of emergence of aquatic insects and how changes to fluxes influence streamside spiders and birds.

3. Urbanization and Climate Change: People are increasingly moving to cities and altering those environments. Cities in mesic regions are become warmer and drier in ways that can mimic the projected effects of climate change. Cities in xeric areas become wetter and may become cooler, at least at some times, in some areas. We are studying how alteration of environmental factors in cities influences animal ecology in ways that may indicate potential affects of climate change. Moreover, our research will inform management decisions in cities that could maximize ecosystem services and minimize disservices in the key places where most people live.

4. Riverine Macrosystems: Rivers are dynamic, connected systems, both in space and in time. Because of this, examining the ecology of a single stream reach, at a single time point, may provide little information about plant and animal population fluctuations. Taking a broader view, it becomes apparent that animal populations in unaltered river systems demonstrate great resistance and resilience to year to year environmental fluctuations, due to the summed effects of asynchronous population dynamics in variable habitats. But human alterations to these river systems can reduce the resistance and resilience. We study how the spatial arrangement of these human alterations can influence broad-scale, long-term population dynamics, thus connecting management decisions to riverine ecosystem services and disservices.

Selected Publications:

McCluney, K. E., J. Burdine**†, and S. D. Frank. 2017. Variation in arthropod hydration across US cities with distinct climate. Journal of Urban Ecology 3(1): 1-9. doi: 10.1093/jue/jux003 [New Journal, No IF] 

McCluney, K. E. and J. L. Sabo. 2016. Animal water balance drives top-down effects in a riparian forest—implications for terrestrial trophic cascades. Proceedings of the Royal Society B 20160881. [IF = 4.82]

McCluney, K. E. and J. L. Sabo. 2014. Sensitivity and tolerance of riparian arthropod communities to altered water resources along a drying river. PLoS ONE 9(10): e109276. [IF = 3.5]

Auerbach, D.**, D. B. Deisenroth, R. R. McShane**, K. E. McCluney, and N. L. R. Poff.  2014. Beyond the concrete: Accounting for ecosystem services from free-flowing rivers. Ecosystem Services 10: 1-5. [No IF]

Allen, D. C., K. E. McCluney, S. R. Elser*, and J. L. Sabo. 2014. Water as a trophic currency in dryland food webs. Frontiers in Ecology and the Environment 12(3): 156-160. doi: 10.1890/130160 [IF = 8.4]

McCluney, K. E., N. L. Poff, J. H. Thorp, G. C. Poole, M. A. Palmer, M. Williams, B. S. Williams**, J. S. Baron. 2014. Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. Frontiers in Ecology and the Environment 12(1) 48-58. doi: 10.1890/120367 [IF = 8.4; Part of a special issue on macrosystems ecology]

Stromberg, J.C., K.E. McCluney, M.D. Dixon, T. Meixner. 2013. Dryland riparian ecosystems in the American Southwest: sensitivity and resilience to climatic extremes. Ecosystems 16(3): 411-415. doi: 10.1007/s10021-012-9606-3 [IF = 3.5; My photo used as a cover image]

Hagen E. M**, K. E. McCluney, K. A. Wyant**, C. U. Soykan**, A. C. Keller**, K. C. Luttermoser, E. J. Holmes*, J. C. Moore, and J. L. Sabo.  2012.  A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems.  Oikos 121(10): 1507-1515. doi: 10.1111/j.1600-0706.2011.19666.x [IF = 3.6]

McCluney, K. E., J. Belnap, A. L. Gonzalez, J. N. Holland, B. P. Kotler, F. T. Maestre, S. D. Smith, S. L. Collins, B. O. Wolf, and E. M. Hagen**. 2012. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biological Reviews 87(3): 563-582. doi: 10.1111/j.1469-185X.2011.00209.x [IF = 9.8]

McCluney, K. E. and J. L. Sabo.  2012.  River drying lowers the diversity and alters the composition of an assemblage of desert riparian arthropods. Freshwater Biology 57(1): 91-103. doi: 10.1111/j.1365-2427.2011.02698.x [IF = 2.9]

McCluney, K. E. and J. L. Sabo.  2010.  Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders. PLoS ONE 5(12): e15696. doi: 10.1371/journal.pone.0015696 [IF = 3.5]

McCluney, K. E. and J. L. Sabo.  2009.  Water availability directly determines per capita consumption at two trophic levels.  Ecology (Report) 90(6): 1463-1469. doi: 10.1890/08-1626.1 [IF = 5.0; This publication received a half page summary as an Editor’s Choice in Science and articles about it were published in multiple newspapers and news websites]