Powered Industrial Truck Program
Table of Contents

INTRODUCTION .. 1
 Forward .. 1
 Objective .. 1
 Applicability .. 1
 Responsibilities ... 1
 Program Enforcement ... 2

OPERATING PROCEDURES ... 3
 Operation .. 3
 Traveling .. 4
 Load Lifting and Carrying .. 4
 Fuel Handling and Storage .. 5
 Battery Charging ... 5
 Carbon Monoxide Awareness ... 6
 Pedestrians ... 6
 Trucks .. 6

VEHICLE INSPECTIONS AND MAINTENANCE .. 7
 Vehicle Inspection ... 7
 Maintenance ... 7

TRAINING ... 9
 In-Class Training .. 9
 Training Certification .. 9
 Re-Training ... 9
 Operator Evaluations ... 10
 Accident Reporting .. 10

APPENDIX A – DEFINITIONS ... 11

APPENDIX B - POWERED INDUSTRIAL TRUCK PREOPERATIONAL CHECKLIST 15

APPENDIX C - POWERED INDUSTRIAL TRUCK OPERATOR EVALUATION 16

REFERENCES .. 17
INTRODUCTION

Forward

In 1970, the United States Congress established the right of workers to "safe and healthful working conditions" through the Occupational Safety and Health Act. This act created the Occupational Safety and Health Administration (OSHA). House Bill 308 incorporates by reference all federal OSHA standards found in the Code of Federal Regulations (CFR), Title 29 Parts 1910, 1926 and 1928 as Ohio Public Employment Risk Reduction Program (PERRP) standards. All Ohio PERRP standards are found in Chapter 4167 of the Ohio Revised Code and the Ohio Administrative Code.

This program has been established by Bowling Green State University to comply with OSHA’s Powered Industrial Truck (PIT) standard, 29 CFR 1910.178.

Objective

The objective of this program is to establish requirements and training for work involving the operation of a powered industrial truck to

- Provide a safe working environment;
- Govern operator use of PITs; and
- Ensure proper care and maintenance of PITs.

Applicability

This program applies to all university employees who operate PITs. A PIT is an industrial vehicle that pushes, pulls, stacks or tiers loads. PITs include fork trucks, tractors, platform lift trucks, motorized hand trucks, and other specialized industrial trucks powered by electric motors or internal combustion engines.

This standard does not apply to compressed air or non-flammable compressed gas-operated industrial trucks, farm vehicles, or vehicles intended for earth moving or over-the-road hauling.

Responsibilities

Sr. Industrial Hygienist, Environmental Health and Safety (EHS) department, is responsible for:

- Coordinating the PIT Program;
- Assisting departments and areas with implementation and training and;
- Evaluating and updating BGSU’s PIT Program.

Supervisors/Management are responsible for

- Ensuring employees attend required training and driving test evaluations administered by the EHS department;
- Attending the classroom training administered by the EHS department at least once even if they don’t personally operate a PIT to ensure they have the same level of understanding of the basic principles and safety rules/regulations that their direct reports need to abide by;
- Designating an employee in their area that has the knowledge, training, and experience to provide hands-on training for new PIT operators and evaluating the trainee’s ability to operate the unit(s) safely;
- Locating and maintaining PIT instruction manuals;
- Ensuring PIT operators are completing pre-operational inspections;
- Enforcing BGSU’s PIT Program by ensuring all employees under their direction comply with all facets of the program; and
- Providing a copy of the PIT Program to employees upon request.

Employees (PIT Operators) are responsible for

- Completely adhering to the requirements of this program and attending required trainings and evaluations; and
- Performing powered industrial truck pre-op inspections for every work shift.

Program Enforcement

A violation of a University employee's responsibility must be reported to the employee's immediate supervisor for appropriate action.
OPERATING PROCEDURES

Operation

The following operating procedures apply:

- Where general lighting is less than 2 lumens per square foot, auxiliary directional lighting shall be provided on the truck.
- Trucks shall not be driven up to anyone standing in front of a bench or other fixed object.
- No person shall be allowed to stand or pass under the elevated portion of the truck, whether loaded or empty.
- Unauthorized personnel shall not be permitted to ride on powered industrial trucks.
- Hands, arms, feet, legs, and head shall at no time be placed between the upright of the mast or outside the running line of the truck.
- Unattended trucks -
 1. When a powered industrial truck is left unattended, load means shall be fully lowered, controls shall be neutralized, power shall be shut off, and brakes set. Wheels shall be blocked if the truck is parked on an incline.
 2. A powered industrial truck is unattended when the operator is 25 feet or more away from the vehicle, which remains in his view, or whenever the operator leaves the vehicle and it is not in his view.
 3. When the operator of an industrial truck is dismounted and within 25 feet of the truck still in his view, the load engaging means shall be fully lowered, controls neutralized, and the brakes set to prevent movement.
- A safe distance shall be maintained from the edge of ramps or platforms while on any elevated dock, platform or freight car. Trucks shall not be used for opening or closing freight doors.
- Brakes shall be set and wheel blocks shall be in place to prevent movement of trucks, trailers, or railroad cars while loading or unloading. Fixed jacks may be necessary to support a semi trailer during loading or unloading when the trailer is not coupled to a tractor. The flooring of trucks, trailers, and railroad cars shall be checked for breaks and weakness before they are driven into.
- There shall be sufficient headroom under overhead installations, lights, pipes, sprinkler systems, etc.
- An overhead guard shall be used as protection against falling objects. It should be noted that an overhead guard is intended to offer protection from the impact of small packages, boxes, bagged material, etc., but not to withstand the impact of a falling capacity load.
- A load backrest extension shall be used whenever necessary to minimize the possibility of the load or part of it from falling rearward.
- Only approved industrial trucks shall be used in hazardous locations.
- Fire aisles, access to stairways, fire equipment, or other emergency equipment/areas shall be kept clear.
- BGSU currently has electric, propane, and dual fuel PITs, none of which are used in areas with hazardous conditions. They are typically used outdoors or indoors in warehousing environments.
Traveling

- All traffic regulations shall be observed, including authorized speed limits. A safe distance shall be maintained (approximately three truck lengths from the truck ahead), and the truck shall be kept under control at all times.
- The right of way shall be yielded to ambulances, fire trucks, or other vehicles in emergency situations.
- Other trucks traveling in the same direction at intersections, blind spots, or other dangerous locations shall not be passed.
- The driver shall slow down and sound the horn at cross aisles and other locations where vision is obstructed. If the load being carried obstructs forward view, the driver shall travel with the load trailing.
- Railroad tracks shall be crossed diagonally wherever possible. Parking closer than 8 feet from the center of railroad tracks is prohibited.
- The driver shall look in the direction of, and keep a clear view of the path of travel.
- Grades shall be ascended or descended slowly.
 1. When ascending or descending grades in excess of 10 percent, loaded trucks shall be driven with loads upgrade.
 2. Unloaded trucks should be operated on all grades with the load engaging means downgrade.
 3. On all grades the load and load engaging means shall be tilted back and raised only as far as necessary to clear the ground surface where possible.
- Under all travel conditions the truck shall be operated at a speed that will permit it to be brought to a stop in a safe manner.
- Stunt driving and horseplay shall not be permitted.
- The driver shall slow down for wet and slippery floors.
- Dock boards or bridge plates shall be properly secured before they are driven over. Dock boards or bridge plates shall be driven over carefully and slowly and their rated capacity never exceeded.
- Running over loose items shall be avoided.
- While negotiating turns, speed shall be reduced to a safe level by means of turning the steering wheel in a smooth, sweeping motion. Except when operating at a very low speed, the steering wheel shall be turned at a moderate, even rate.

Load Lifting and Carrying

In order to prevent tipping and load falling hazards, BGSU has established the following load lifting and carrying procedures:

- Only stable or safely arranged loads shall be handled. Caution shall be exercised when handling off-centered loads, which cannot be centered.
- Only loads within the rated capacity of the truck shall be handled.
- Long or high (including multiple-tiered) loads, which may affect capacity, shall be adjusted.
- When attachments are used, particular care should be taken in securing, manipulating, positioning, and transporting the load. Trucks equipped with attachments shall be operated as partially loaded trucks when not handling a load. Only manufacturer approved attachments can be used.
• A load engaging means shall be placed under the load as far as possible and the mast shall be carefully tilted back to stabilize the load.
• Extreme care shall be used when tilting the load forward or backward, particularly when high tiering. Tilting forward with the load engaging means elevated shall be prohibited except to pick up a load. An elevated load shall not be tilted forward except when the load is in a deposit position over a rack or stack. When stacking or tiering, only enough backward tilt to stabilize the load shall be used.

Fuel Handling and Storage

The storage and handling of liquid fuels, including gasoline and diesel fuel must be done in accordance with the NFPA Flammable and Combustible Liquids code (NFPA 30). The storage and handling of liquefied petroleum gas fuel must be done in accordance with the NFPA Storage and Handling of Liquefied Petroleum Gases code (NFPA 58). Contact the EHS department for details of or questions about these codes.

Battery Charging

Because of the hazards involved in battery charging and changing, only personnel who have been trained in the appropriate procedures, understand the dangers involved, and know the appropriate precautions to take may be allowed to perform this work.

Departments must have an area specifically designated for charging or changing batteries. This area must remain separate from the main aisles and protected from damage by trucks. Good housekeeping procedures are essential. The area must be clean and free of any combustible materials. A moderate temperature range suitable for battery maintenance must also be maintained.

The following safety features must be exist in these areas:

• An eyewash station for workers (except where closed looped systems exist because the splash potential has been eliminated).
• A hose and floor drain for flushing and neutralizing spilled electrolyte.
• Protection of the charging apparatus to prevent damage from vehicles.
• Adequate ventilation for dispersal of vapors from gassing batteries.

Other requirements include:

• Smoking is prohibited in charging areas. Battery charging generates hydrogen gas that may present an explosion hazard. This precaution also applies to open flames, sparks, or electric arcs. An effective means of fire protection must be provided in the area.
• A conveyor, overhead hoist, or equivalent material handling equipment shall be provided for handling batteries (if applicable).
• Reinstalled batteries shall be properly positioned and secured in the truck.
• A carboy tilter or siphon shall be provided for handling electrolyte.
• When charging batteries, acid shall be poured into water; water shall not be poured into acid.
• Trucks shall be properly positioned and brake applied before attempting to change or charge batteries.
- Care shall be taken to assure that vent caps are functioning. The battery cover(s) shall be open to dissipate heat.
- Tools and other metallic objects shall be kept away from the top of uncovered batteries.

Carbon Monoxide Awareness

Powered industrial trucks with internal combustion engines produce carbon monoxide (CO), an odorless, colorless, and deadly gas produced by the incomplete burning of any material that contains carbon. These materials include gasoline, natural gas, propane, coal, and wood. The most common source of CO is the internal combustion engine. Trucks, cars, forklifts, floor polishers, pressure washers, or any other machine powered by fossil fuels generates CO. Adequate ventilation in areas of truck traffic is essential to keep CO at safe levels. In areas where this is uncertain or not available, a CO detector shall be installed.

Pedestrians

Because powered industrial trucks are typically used near pedestrians, both pedestrians and powered industrial truck operators need to watch out for one another. Pedestrians always have the right-of-way.

Trucks

- The brakes of highway trucks shall be set and wheel chocks placed under the rear wheels to prevent the trucks from rolling while they are boarded with powered industrial trucks.
- Fixed jacks may be necessary to support a semitrailer to prevent upending during the loading or unloading when the trailer is not coupled to a tractor.
- Prior to a highway truck being entered by a PIT, the floor or bed should be checked inside for weaknesses or soft spots, cracks, breaks, holes, and damage of any kind as well as a quick visual outdoors looking at the underside of the truck floor. Highway trucks shall not be driven into if there is any concern that the floor will not support the weight of the PIT.
VEHICLE INSPECTIONS AND MAINTENANCE

Vehicle Inspection

Industrial trucks must be examined before being placed in service, and shall not be placed in service if the examination shows any condition adversely affecting the safety of the vehicle. Such examination shall be made at least daily. Where industrial trucks are used on a round-the-clock basis, they must be examined at the beginning of each shift. Defects must be reported and corrected immediately. The BGSU PIT inspection form can be found in Appendix B. Vehicle inspections must be retained by the supervisor for six months.

Maintenance

If at any time a powered industrial truck is found to be in need of repair, defective, or in any way unsafe, the truck shall be taken out of service until it has been restored to a safe operating condition. The following procedures also apply:

- The manufacturer’s recommended maintenance and lubrication schedule must be followed.
- Modifications and additions, which affect capacity and safe operation, shall not be performed by the customer or user without the manufacturer’s prior written approval. Capacity, operation, and maintenance instruction plates, tags, or decals shall then be changed accordingly.
- If the truck is equipped with front-end attachments other than factory installed attachments, the user shall request that the truck be marked to identify the attachments and show the approximate weight of the truck and attachment combination at maximum elevation with load laterally centered.
- The user shall ensure that all nameplates and markings are in place and are maintained in a legible condition.
- All repairs shall be made by authorized personnel.
- No repairs shall be made in hazardous locations.
- Those repairs to the fuel and ignition systems of trucks which involve fire hazards shall be conducted only in locations designated for such repairs.
- Trucks in need of repairs to the electrical system shall have the battery disconnected prior to such repairs.
- All parts of any such industrial truck requiring replacement shall be replaced only by parts equivalent as to safety with those used in the original design.
- Industrial trucks shall not be altered so that the relative positions of the various parts are different from what they were when originally received from the manufacturer, nor shall they be altered, either by the addition of extra parts not provided by the manufacturer or by the elimination of any parts, with the exception of conversion from gasoline to petroleum gas as stated in 29CFR1910.178 (q) (12).
- Additional counter weighting of fork trucks shall not be done unless approved by the truck manufacturer.
- Water mufflers shall be filled daily or as frequently as is necessary to prevent depletion of the supply of water below 75 percent of the filled capacity. Vehicles with mufflers having screens or other parts that may become clogged shall not be operated while such screens or parts are clogged. Any vehicle that emits hazardous sparks or flames from the exhaust
system shall immediately be removed from service and not returned until the cause for the emission of such sparks and flames has been eliminated.

- When the temperature of any part of any truck is found to be in excess of its normal operating temperature, thus creating a hazardous condition, the vehicle shall be removed from service and not returned to service until the cause for such overheating has been eliminated.

- Industrial trucks shall be kept in a clean condition, free of lint, excess oil, and grease. Noncombustible agents should be used for cleaning trucks. Low flash point (below 100 deg. F.) solvents shall not be used. High flash point (at or above 100 deg. F.) solvents may be used. Precautions regarding toxicity, ventilation, and fire hazard shall be followed for the agent or solvent used.

- Fuel tanks shall not be filled while the engine is running. Spillage shall be avoided.

- Spillage of oil or fuel shall be carefully washed away or completely evaporated and the fuel tank cap replaced before restarting the engine.

- No truck shall be operated with a leak in the fuel system until the leak has been corrected.

- Open flames shall not be used for checking electrolyte level in storage batteries or gasoline levels in fuel tanks.
TRAINING

In-Class Training

The following information will be covered at a minimum:

- The importance of the powered industrial truck program and procedures;
- A summary of the OSHA powered industrial truck standard;
- An overview of BGSU’s written Powered Industrial Truck Program;
- An explanation of how Environmental Health and Safety can assist departments.
- Truck related topics;
- Workplace related topics;
- Truck operations;
- Traveling;
- Loading; and
- Inspection and maintenance.

NOTE: Even if supervisors do not drive a PIT, they are strongly encouraged to attend this training at least once (periodic refreshers are recommended) so they can ensure all direct reports are following all applicable safety rules and regulations while operating these units.

Hands-on demonstration and training will be provided by a designated employee in each department who has the knowledge, training, and experience to train PIT operators and evaluate their competency. This training will include at a minimum:

- An overview of the truck controls, operation, maintenance, daily inspections;
- Demonstrations performed by the trainer; and
- Job specific tasks performed and practiced by trainee.

Trainers must be present at all times while trainees are operating lifts.

Training Certification

After successful completion of classroom and hands-on training, the employee will perform a driving test that is designed and administered by the Sr. Industrial Hygienist relative to the normal tasks performed by the employee. Testing performance will be documented on the form found in Appendix C. Once passed, the employee will be issued a license indicating the name of the driver, date of the training, expiration date, signature of the program administrator, and what type of PIT the individual is authorized to operate. At any time, a list of current licensed operators can be extracted from the EHS online Learning Management System (Info Pro).

Re-Training

Refresher training in relevant topics is required when any of the following occur:

- An operator has been observed to operate the vehicle in an unsafe manner
- The operator has been involved in an accident or a near miss
- The operator is assigned to a different truck
- The conditions change in an area where the PIT is operated
- A new truck is brought into use
- The operator has received an evaluation that reveals that the operator is not operating the powered industrial truck safely

Operator Evaluations

Evaluations must be completed at least once every three years to verify the operator has retained and uses the knowledge and skills needed to drive safely. The evaluation will include observation of operation, verbal questioning about safety issues, and signing of the evaluation sheet by the operator and evaluator. This evaluation must be completed by the Sr. Industrial Hygienist, or designee as determined by the Sr. Industrial Hygienist.

Accident Reporting

BGSU’s Injury and Illness Report must be submitted to the EHS department if an operator has been involved in an accident or near-miss incident involving a PIT. This form can be found on the EHS website by clicking the “Injury and Illness Reporting” link.
APPENDIX A – DEFINITIONS

The following definitions help to explain the principle of stability:

Center of gravity is the point on an object at which all of the object's weight is concentrated. For symmetrical loads, the center of gravity is at the middle of the load.

Counterweight is the weight that is built into the truck's basic structure and is used to offset the load's weight and to maximize the vehicle's resistance to tipping over.

Fulcrum is the truck's axis of rotation when it tips over.

Grade is the slope of a surface, which is usually measured as the number of feet of rise or fall over a hundred foot horizontal distance (the slope is expressed as a percent).

Lateral stability is a truck's resistance to overturning sideways.

Line of action is an imaginary vertical line through an object's center of gravity.

Load center is the horizontal distance from the load's edge (or the fork's or other attachment's vertical face) to the line of action through the load's center of gravity.

Longitudinal stability is the truck's resistance to overturning forward or rearward.

Moment is the product of the object's weight times the distance from a fixed point (usually the fulcrum). In the case of a powered industrial truck, the distance is measured from the point at which the truck will tip over to the object's line of action. The distance is always measured perpendicular to the line of action.

Track is the distance between the wheels on the same axle of the truck.

Wheelbase is the distance between the centerline of the vehicle's front and rear wheels.

General

Determining the stability of a powered industrial truck is simple once a few basic principles are understood. There are many factors that contribute to a vehicle's stability: the vehicle's wheelbase, track, and height; the load's weight distribution; and the vehicle's counterweight location (if the vehicle is so equipped).

The "stability triangle," used in most stability discussions, demonstrates stability simply.

Basic Principles

Whether an object is stable depends on the object's moment at one end of a system being greater than, equal to, or smaller than the object's moment at the system's other end. This principle can be seen in the way a see-saw or teeter-totter works: that is, if the product of the load and distance from the fulcrum (moment) is equal to the moment at the device's other end, the device is balanced and it will not move. However, if there is a greater moment at one end of the device, the device will try to move downward at the end with the greater moment.

The longitudinal stability of a counterbalanced powered industrial truck depends on the vehicle's moment and the load's moment. In other words, if the mathematic product of the load moment (the distance from the front wheels, the approximate point at which the vehicle would tip forward) to the
load's center of gravity times the load's weight is less than the vehicle's moment, the system is balanced and will not tip forward. However, if the load's moment is greater than the vehicle's moment, the greater load-moment will force the truck to tip forward.

The Stability Triangle

Almost all counterbalanced powered industrial trucks have a three-point suspension system, that is, the vehicle is supported at three points. This is true even if the vehicle has four wheels. The truck's steer axle is attached to the truck by a pivot pin in the axle's center. When the points are connected with imaginary lines, this three-point support forms a triangle called the stability triangle. Figure 1 depicts the stability triangle.

![Figure 1](image)

Notes:

1. When the vehicle is loaded, the combined center of gravity (CG) shifts toward line B-C. Theoretically the maximum load will result in the CG at the line B-C. In actual practice, the combined CG should never be at line B-C.

2. The addition of additional counterweight will cause the truck CG to shift toward point A and result in a truck that is less stable laterally.

When the vehicle's line of action, or load center, falls within the stability triangle, the vehicle is stable and will not tip over. However, when the vehicle's line of action or the vehicle/ load combination falls outside the stability triangle, the vehicle is unstable and may tip over. (See Figure 2.)
Longitudinal Stability

The axis of rotation when a truck tips forward is the front wheels' points of contact with the pavement. When a powered industrial truck tips forward, the truck will rotate about this line. When a truck is stable, the vehicle-moment must exceed the load-moment. As long as the vehicle-moment is equal to or exceeds the load-moment, the vehicle will not tip over. On the other hand, if the load moment slightly exceeds the vehicle-moment, the truck will begin to tip forward, thereby causing the rear to lose contact with the floor or ground and resulting in loss of steering control. If the load-moment greatly exceeds the vehicle moment, the truck will tip forward.

To determine the maximum safe load-moment, the truck manufacturer normally rates the truck at a maximum load at a given distance from the front face of the forks. The specified distance from the front face of the forks to the line of action of the load is commonly called the load center. Because larger trucks normally handle loads that are physically larger, these vehicles have greater load centers. Trucks with a capacity of 30,000 pounds or less are normally rated at a given load weight at a 24-inch load center. Trucks with a capacity greater than 30,000 pounds are normally rated at a given load weight at a 36- or 48-inch load center. To safely operate the vehicle, the operator should always check the data plate to determine the maximum allowable weight at the rated load center.

Although the true load-moment distance is measured from the front wheels, this distance is greater than the distance from the front face of the forks. Calculating the maximum allowable load-moment using the load-center distance always provides a lower load-moment than the truck was designed to handle. When handling unusual loads, such as those that are larger than 48 inches long (the center of gravity is greater than 24 inches) or that have an offset center of gravity, etc., a maximum allowable load-moment should be calculated and used to determine whether a load can be safely handled. For example, if an operator is operating a 3000 pound capacity truck (with a 24-inch load center), the maximum allowable load-moment is 72,000 inch-pounds (3,000 times 24). If a load is 60 inches long (30-inch load center), then the maximum that this load can weigh is 2,400 pounds (72,000 divided by 30).
Lateral Stability

The vehicle's lateral stability is determined by the line of action's position (a vertical line that passes through the combined vehicle's and load's center of gravity) relative to the stability triangle. When the vehicle is not loaded, the truck's center of gravity location is the only factor to be considered in determining the truck's stability. As long as the line of action of the combined vehicle's and load's center of gravity falls within the stability triangle, the truck is stable and will not tip over. However, if the line of action falls outside the stability triangle, the truck is not stable and may tip over. Refer to Figure 2.

Factors that affect the vehicle's lateral stability include the load's placement on the truck, the height of the load above the surface on which the vehicle is operating, and the vehicle's degree of lean.

Dynamic Stability

Up to this point, the stability of a powered industrial truck has been discussed without considering the dynamic forces that result when the vehicle and load are put into motion. The weight's transfer and the resultant shift in the center of gravity due to the dynamic forces created when the machine is moving, braking, cornering, lifting, tilting, and lowering loads, etc., are important stability considerations.

When determining whether a load can be safely handled, the operator should exercise extra caution when handling loads that cause the vehicle to approach its maximum design characteristics. For example, if an operator must handle a maximum load, the load should be carried at the lowest position possible, the truck should be accelerated slowly and evenly, and the forks should be tilted forward cautiously. However, no precise rules can be formulated to cover all of these eventualities.
APPENDIX B - POWERED INDUSTRIAL TRUCK PREOPERATIONAL CHECKLIST

<table>
<thead>
<tr>
<th></th>
<th>OK (x)</th>
<th>Problems/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horn/Lights/Gauges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guards and body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seatbelt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performed By:____________________________ Date:____________ Time:__________ AM/PM

NOTE 1: If anything faulty is found that could endanger the safety of the driver or a pedestrian, the lift shall be taken out of service immediately.

NOTE 2: All needed repairs should be reported to the area supervisor immediately.
APPENDIX C - POWERED INDUSTRIAL TRUCK OPERATOR EVALUATION

EMPLOYEE (Print)_______________(Sign)_______________DATE_______TIME_______am/pm

Observe the following:

1. Checked preoperational checklist and performed an inspection if one had not been performed for that work shift yet.

2. Shows familiarity with truck controls.

3. Gave proper signals when turning and slowed down at intersections.

4. Sounded horn at intersections and obeyed signs.

5. Kept a clear view of direction of travel, driving backward when required.

6. Turned corners correctly - was aware of rear end swing.

7. Yielded to pedestrians.

8. Drove under control and within proper traffic aisles.

10. Lifted and maneuvered load properly.

11. Traveled with load at proper height.

12. Lowered load smoothly/slowly.

13. Stops smoothly/completely.

14. Load balanced properly and forks and forks under the load all the way.

15. Carried parts/stock in approved containers.

16. Placed loads within designated area.

17. Stacked loads evenly and neatly.

18. Checked load weights.

19. Upon parking, lowered forks to floor, neutralized controls, set brakes, turned ignition off.

20. Exited using 3 points of contact while facing the unit.

Evaluator’s Signature: ______________________________________
REFERENCES