CS 6420: DISTRIBUTED SIMULATION

Course Description

Principles of distributed simulation and applications using multiprocessor systems. Synchronization and time management for distributed environments. High-level architecture for distributed simulation. Prerequisite: CS 3270.

Course Syllabus

- **Introduction**
 - Why simulation
 - Why Parallel and Distributed Simulation
 - Analytic Simulation vs. Virtual Environment
 - Typical Applications

- **Discrete Event Simulation Fundamentals**
 - Basic Concepts: System Attribute, State Variables, Event List, Simulation Time
 - Basic Mechanisms: Time Advance, Event Scheduling, Inherent Parallelism
 - Modeling issues and Logical Processes
 - Data Model, Probability Distributions, Statistics Collection

- **Parallel Processing Overview**
 - Brief intro to parallel processing
 - Overview of Cluster Computing with MPI
 - Underlying Technologies
 - Concurrent simulation processes

- **Conservative Synchronization Algorithms**
 - Synchronization Problem
 - Deadlock Avoidance Using Null Messages
 - Lookahead and the Simulation Model
 - Deadlock Detection and Recovery
 - Synchronous Execution

- **Optimistic Synchronization Method**
 - Time Warp
 - Rolling Back & Error Correction, Global Virtual Time, Memory Management Issues
 - Performance Issues
 - Optimization Techniques
 - Comparing Optimistic and Conservative Synchronization

- **Hybrid Protocols**
 - Moving Time Windows
 - Space Time Simulation
 - Breathing Time Buckets
• Distributed Simulation Standards
 o Distributed Virtual Environment
 o High Level Architecture, HLA

 Overview, Rules, Object Model, Run-Time Infrastructure, Communication Issues

Laboratory and Project Component

This course includes a major term project and 3 small simulation laboratory assignments.