SE 3540 : INTRODUCTION TO SOFTWARE ENGINEERING

Semester Hours:	3.0	Contact Hours: 3
Coordinator:	Robert Green	
Text:	Head First Software Development	
Author(s):	DAN PILONE AND RUSS MILES	
Year:	2007	

SPECIFIC COURSE INFORMATION

Catalog Description:

Overview of software engineering as a discipline. Software life-cycle models and phases of the software development process. Introduction to Human Computer Interaction (HCI), user-centered development, teams and project management. Prerequisite: Grade of C or better in CS 2020.

Course type: **REQUIRED**

SPECIFIC COURSE GOALS

- I can understand key terms used when analyzing human interaction with software.
- I can analyze, specify and document software requirements for a software system.
- I can understand user interface design standards.
- I can express and understand the importance of professional ethics, etiquette, and communication in a software development environment.
- I can develop alternative design solutions to a given problem and recommend the best one within limitations of cost, time, knowledge, existing systems, and organizations.
- I can apply the process of project initiation, planning, execution, and management.
- I can analyze and compare various software development lifecycle methods that include requirements analysis, design, implementation, testing and maintenance.

COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

• CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions

- CS 4 Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles
- CS 5 Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline
- CS 6. Apply computer science theory and software development fundamentals to produce computing-based solutions

SOFTWARE ENGINEERING STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- SE 1 An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- SE 2 An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- SE 4 An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- SE 5 An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- SE 6 An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- SE 7 An ability to acquire and apply new knowledge, as needed, using appropriate learning strategies

LIST OF TOPICS COVERED

- Software Processes and Models
 - Software engineering concepts
 - o SDLC, Process model
 - o Agile Software Development
- Planning and Requirements Analysis
 - o User and/or system requirements
 - Effort estimation
- Design and Development Methodologies
 - o Human and Computer Interaction and Design
 - o Team design
 - o Architecture and design patterns
 - Internal and external design factors
 - Coding methods and guidelines
- Documentation, Testing and Evaluation
 - o Standards and best practices
 - Testing methods
 - Assurance and acceptance criteria
 - Reliability and performance
- Project Management
 - Resources and configuration control
 - o Risk analysis
 - Product integration
 - Best practices
 - Release management and source control

Information Management (related) Topic	Description	Textbook Reference	Class Hours Estimate
*Version Control Systems	How to organize files/folders for software development, notion of local vs remote repositories, merging, branching, etc.	Ch 6 ¹	2
*UML	Show modeling object-oriented classes using UML class diagram notation, including modeling relationships between classes; representation of collaborating objects using UML sequence diagrams	Ch 3, 4, & 5 ²	2
Relational database tables and simple queries	When introducing class diagrams, can also show how the data could be represented in a table structure. Show parallels between classes relationships (aggregation/composition) and table relationships. Show very simple SELECT queries for accessing data from relational tables.	None	<1

¹Textbook: *Head First Software Development, by Miles and Pilone*

²Textbook: UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd Edition, by Martin Fowler