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What Is School Algebra?

Algebra is not easily defined. The algebra
taught in school has quite a different cast

from the algebra taught to mathematics majors.
Two mathematicians whose writings have greatly
influenced algebra instruction at the college level,
Saunders Mac Lane and Garrett Birkhoff (1967),
begin their Algebra with an attempt to bridge
school and university algebras:

Algebra starts as the art of manipulating sums, prod-
ucts, and powers of numbers. The rules for these
manipulations hold for all numbers, so the manipu-
lations may be carried out with letters standing for
the numbers. It then appears that the same rules
hold for various different sorts of numbers … and
that the rules even apply to things … which are not
numbers at all. An algebraic system, as we will
study it, is thus a set of elements of any sort on
which functions such as addition and multiplication
operate, provided only that these operations satisfy
certain basic rules. (p. 1)

If the first sentence in the quote above is thought
of as arithmetic, then the second sentence is
school algebra. For the purposes of this article,
then, school algebra has to do with the under-
standing of “letters” (today we usually call them
variables) and their operations, and we consider
students to be studying algebra when they first en-
counter variables.

However, since the concept of variable itself is
multifaceted, reducing algebra to the study of vari-
ables does not answer the question “What is
school algebra?” Consider these equations, all of

which have the same form—the product of two
numbers equals a third:

1.  A = LW
2.  40 = 5x
3.  sin x = cos x • tan x
4.  1 = n • (1/n)
5.  y = kx

Each of these has a different feel. We usually call
(1) a formula, (2) an equation (or open sentence)
to solve, (3) an identity, (4) a property, and (5) an
equation of a function of direct variation (not to be
solved). These different names reflect different
uses to which the idea of variable is put. In (1), A,
L, and W stand for the quantities area, length, and
width and have the feel of knowns. In (2), we tend
to think of x as unknown. In (3), x is an argument
of a function. Equation (4), unlike the others, gen-
eralizes an arithmetic pattern, and n identifies an
instance of the pattern. In (5), x is again an argu-
ment of a function, y the value, and k a constant
(or parameter, depending on how it is used). Only
with (5) is there the feel of “variability,” from
which the term variable arose. Even so, no such
feel is present if we think of that equation as repre-
senting the line with slope k containing the origin.

Conceptions of variable change over time. In a
text of the 1950s (Hart 1951a), the word variable is
not mentioned until the discussion of systems (p.
168), and then it is described as “a changing num-
ber.” The introduction of what we today call vari-
ables comes much earlier (p. 11), through formu-
las, with these cryptic statements: “In each
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only convention causes us to use x instead of ? or
! or ___ to represent an unknown. The verbal de-
scription of a situation, as in the first question,
“What number, when added to 3, gives 7?” may
seem to be the least algebraic, but it was the way
that many people did algebra before the invention
of modern symbolism in the 1590s. (The use of x
and y to represent unknowns dates from Descartes
in the early 1600s.) Thus, there is a sense that you
are doing algebra whenever you ask students to
find an unknown in a situation.

Formulas
If we have the formula A = LW for the area of a
rectangle and we ask students to find A when L =
5 and W = 7, we are doing algebra. If we ask stu-
dents to find n when 5 × 7 = n, whether we are
doing algebra is not clear.

If the teacher asks, “What number can I replace n
by and make this a true statement?” the teacher is
treating the statement as algebra. If the teacher
asks, “What is the answer?” then the teacher is treat-
ing the question as arithmetic. The point is that
much of the difference between arithmetic and al-
gebra is in the ways questions are couched. It is not
hard to do algebra, even with very young students.

Generalized Patterns
My father was a bookkeeper by trade, and he
taught me a number of shortcuts for doing arith-
metic. For instance, to multiply a number by 19, I
could multiply the number by 20 and then subtract
the number. The algebraic description is short. If n
is the number, 19n = 20n – n. This special case of
the distributive property of multiplication over sub-
traction is called just the distributive property for
short. Notice how much shorter the algebraic de-
scription is than the description in words. Further-
more, the algebraic description bears a visual re-
semblance to the arithmetic. For instance, if you
buy 19 notebooks at $2.95 each, substitute $2.95
for n.

19 • $2.95 = 20 • $2.95 – $2.95

Many people can calculate the right side using men-
tal arithmetic. It equals $59.00 – $2.95, or $56.05.

The algebraic description just given suggests that
algebra is the most appropriate language for writ-
ing down general properties in arithmetic. You
may tell students, “You can multiply two numbers
in either order, and the answer will be the same,”

but you can write “For any numbers a and b, a • b =
b • a.” The specific instance 6 • 12 = 12 • 6 looks
like the algebra and does not look at all like the
verbal description.

So you are doing algebra if you discuss generaliza-
tions such as “Add 0 to a number, and the answer
is that number. Add a number to itself, and the re-
sult is the same as two times the number.” But in-
stead of writing them down in English, you use the
language of algebra (0 + n = n; t + t = 2t).

Placeholders
Most people have played Monopoly or other board
games in which the following kind of direction is
given: “Roll the dice. Whatever number you get,
move forward twice the number of spaces.” In al-
gebraic language it means “If you roll d on the
dice, then move forward 2d.”

Spreadsheets use algebra. Take the number in one
cell of an array, subtract it from a number in a sec-
ond cell, and put the difference in a third cell. As
in the dice situation, we do not need to know
what numbers we have to understand the direc-
tions. If the number in the first cell is x and the
number in the second cell is y, then the number in
the third cell is y – x.

Consequently, whenever one plays a “pick a num-
ber” game—pick a number, add 3 to it, subtract 5,
and so on—one is verbally doing algebra, for one
is thinking of a number, any number, and dealing
with it.

Relationships
Bob is two years older than Marisha. What could
be their ages? If Marisha is 7, then Bob is 9. If Mar-
isha is 4, then Bob is 6. We do not have to know
their ages to know how they are related. If Bob’s
age is represented by B and Marisha’s age is repre-
sented by M, then we could write the following:

B = M + 2 (Bob is 2 years older than Marisha.)

B – M = 2 (The difference in their ages is 2.)

M = B – 2 (Marisha is 2 years younger than
Bob.)

Any of these representations is correct. Although
there are many ways to write the relationship be-
tween B and M, they are equivalent. This equiva-
lence is easier to determine in the algebraic de-
scriptions than in the English descriptions in
parentheses beside them.



9DEFINING ALGEBRAIC THINKING AND AN ALGEBRA CURRICULUM8 ALGEBRAIC THINKING, GRADES K–12

It is clear that these two issues relate to the very
purposes for teaching and learning algebra, to the
goals of algebra instruction, to the conceptions we
have of this body of subject matter. What is not as
obvious is that they relate to the ways in which
variables are used. In this paper, I try to present a
framework for considering these and other issues
relating to the teaching of algebra. My thesis is that
the purposes we have for teaching algebra, the
conceptions we have of the subject, and the uses
of variables are inextricably related. Purposes for
algebra are determined by, or are related to, dif-
ferent conceptions of algebra, which correlate with
the different relative importance given to various
uses of variables.

Conception 1: Algebra as Generalized
Arithmetic
In this conception, it is natural to think of variables
as pattern generalizers. For instance, 3 + 5.7 = 5.7
+ 3 is generalized as a + b = b + a. The pattern

3 • 5 = 15
2 • 5 = 10
1 • 5 = 5
0 • 5 = 0

is extended to give multiplication by negatives
(which, in this conception, is often considered al-
gebra, not arithmetic):

–1 • 5 = –5
–2 • 5 = –10

This idea is generalized to give properties such as

–x • y = –xy.

At a more advanced level, the notion of variable as
pattern generalizer is fundamental in mathematical
modeling. We often find relations between num-
bers that we wish to describe mathematically, and
variables are exceedingly useful tools in that de-
scription. For instance, the world record T (in sec-
onds) for the mile run in the year Y since 1900 is
rather closely described by the equation

T = – 0.4Y + 1020.

This equation merely generalizes the arithmetic
values found in many almanacs. In 1974, when the
record was 3 minutes 51.1 seconds and had not
changed in seven years, I used this equation to
predict that in 1985 the record would be 3 minutes
46 seconds (for graphs, see Usiskin [1976] or

Bushaw et al. [1980]). The actual record at the end
of 1985 was 3 minutes 46.31 seconds.

The key instructions for the student in this concep-
tion of algebra are translate and generalize. These
are important skills not only for algebra but also
for arithmetic. In a compendium of applications of
arithmetic (Usiskin and Bell 1984), Max Bell and I
concluded that it is impossible to adequately study
arithmetic without implicitly or explicitly dealing
with variables. Which is easier, “The product of
any number and zero is zero” or “For all n, n • 0 =
0”? The superiority of algebraic over English lan-
guage descriptions of number relationships is due
to the similarity of the two syntaxes. The algebraic
description looks like the numerical description;
the English description does not. A reader in doubt
of the value of variables should try to describe the
rule for multiplying fractions first in English, then
in algebra.

Historically, the invention of algebraic notation in
1564 by Francois Viete (1969) had immediate ef-
fects. Within fifty years, analytic geometry had
been invented and brought to an advanced form.
Within a hundred years, there was calculus. Such is
the power of algebra as generalized arithmetic.

Conception 2: Algebra as a Study of
Procedures for Solving Certain Kinds
of Problems

Consider the following problem:

When 3 is added to 5 times a certain number,
the sum is 40. Find the number.

The problem is easily translated into the language
of algebra:

5x + 3 = 40

Under the conception of algebra as a generalizer
of patterns, we do not have unknowns. We gener-
alize known relationships among numbers, and so
we do not have even the feeling of unknowns.
Under that conception, this problem is finished;
we have found the general pattern. However,
under the conception of algebra as a study of pro-
cedures, we have only begun.

We solve with a procedure. Perhaps add –3 to
each side:

5x + 3 + –3 = 40 + –3

formula, the letters represent numbers. Use of let-
ters to represent numbers is a principal character-
istic of algebra” (Hart’s italics). In the second book
in that series (Hart 1951b), there is a more formal
definition of variable (p. 91): “A variable is a literal
number that may have two or more values during
a particular discussion.”

Modern texts in the late part of that decade had a
different conception, represented by this quote
from May and Van Engen (1959) as part of a care-
ful analysis of this term:

Roughly speaking, a variable is a symbol for which
one substitutes names for some objects, usually a
number in algebra. A variable is always associated
with a set of objects whose names can be substi-
tuted for it. These objects are called values of the
variable. (p. 70)

Today the tendency is to avoid the “name object”
distinction and to think of a variable simply as a
symbol for which things (most accurately, things
from a particular replacement set) can be substituted.

The “symbol for an element of a replacement set”
conception of variable seems so natural today that
it is seldom questioned. However, it is not the only
view possible for variables. In the early part of this
century, the formalist school of mathematics con-
sidered variables and all other mathematics sym-
bols merely as marks on paper related to each
other by assumed or derived properties that are
also marks on paper (Kramer 1981).

Although we might consider such a view tenable
to philosophers but impractical to users of mathe-
matics, present-day computer algebras such as
MACSYMA and muMath (see Pavelle, Rothstein,
and Fitch [1981]) deal with letters without any need
to refer to numerical values. That is, today’s com-
puters can operate as both experienced and inex-
perienced users of algebra do operate, blindly ma-
nipulating variables without any concern for, or
knowledge of, what they represent.

Many students think all variables are letters that
stand for numbers. Yet the values a variable takes
are not always numbers, even in high school
mathematics. In geometry, variables often repre-
sent points, as seen by the use of the variables A,
B, and C when we write “if AB = BC, then !ABC
is isosceles.” In logic, the variables p and q often
stand for propositions; in analysis, the variable f
often stands for a function; in linear algebra, the
variable A may stand for a matrix or the variable v

for a vector; and in higher algebra the variable *
may represent an operation. The last of these
demonstrates that variables need not be repre-
sented by letters.

Students also tend to believe that a variable is al-
ways a letter. This view is supported by many ed-
ucators, for

3 + x = 7 and 3 + ! = 7

are usually considered algebra, whereas

3 + ___ = 7 and 3 + ? = 7

are not, even though the blank and the question
mark are, in this context of desiring a solution to an
equation, logically equivalent to the x and the !.

In summary, variables have many possible defini-
tions, referents, and symbols. Trying to fit the
idea of variable into a single conception oversim-
plifies the idea and in turn distorts the purposes
of algebra.

Two Fundamental Issues in
Algebra Instruction
Perhaps the major issue surrounding the teaching
of algebra in schools today regards the extent to
which students should be required to be able to
do various manipulative skills by hand. (Everyone
seems to acknowledge the importance of students
having some way of doing the skills.) A 1977
NCTM-MAA report detailing what students need to
learn in high school mathematics emphasizes the
importance of learning and practicing these skills.
Yet more recent reports convey a different tone:

The basic thrust in Algebra I and II has been to give
students moderate technical facility.… In the future,
students (and adults) may not have to do much al-
gebraic manipulation.… Some blocks of traditional
drill can surely be curtailed. (CBMS 1983, p. 4)

A second issue relating to the algebra curriculum is
the question of the role of functions and the timing
of their introduction. Currently, functions are
treated in most first-year algebra books as a rela-
tively insignificant topic and first become a major
topic in advanced or second-year algebra. Yet in
some elementary school curricula (e.g., CSMP
[1975]) function ideas have been introduced as early
as first grade, and others have argued that functions
should be used as the major vehicle through which
variables and algebra are introduced.
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some students have difficulty with it. Let us analyze
the usual solution. We begin by noting that points
on a line are related by an equation of the form

y = mx + b.

This is both a pattern among variables and a for-
mula. In our minds it is a function with domain
variable x and range variable y, but to students it is
not clear which of m, x, or b is the argument. As a
pattern it is easy to understand, but in the context
of this problem, some things are unknown. All the
letters look like unknowns (particularly the x and
y, letters traditionally used for that purpose).

Now to the solution. Since we know m, we substi-
tute for it:

y = 11x + b

Thus m is here a constant, not a parameter. Now
we need to find b. Thus b has changed from para-
meter to unknown. But how to find b? We use one
pair of the many pairs in the relationship between
x and y. That is, we select a value for the argument
x for which we know y. Having to substitute a pair
of values for x and y can be done because y = mx
+ b describes a general pattern among numbers.
With substitution,

2 = 11 • 6 + b,

and so b = –64. But we haven’t found x and y
even though we have values for them, because
they were not unknowns. We have only found the
unknown b, and we substitute in the appropriate
equation to get the answer

y = 11x – 64.

Another way to make the distinction between the
different uses of the variables in this problem is to
engage quantifiers. We think: For all x and y, there
exist m and b with y = mx + b. We are given the
value that exists for m, so we find the value that
exists for b by using one of the “for all x and y”
pairs, and so on. Or we use the equivalent set lan-
guage: We know the line is {(x,y): y = mx + b} and
we know m and try to find b. In the language of
sets or quantifiers, x and y are known as dummy
variables because any symbols could be used in
their stead. It is rather hard to convince students
and even some teachers that {x: 3x = 6} = {y: 3y =
6}, even though each set is {2}. Many people think
that the function f with f(x) = x + 1 is not the same
as the function g with the same domain as f and
with g(y) = y + 1. Only when variables are used as

arguments may they be considered as dummy vari-
ables; this special use tends to be not well under-
stood by students.

Conception 4: Algebra as the Study of
Structures

The study of algebra at the college level involves
structures such as groups, rings, integral domains,
fields, and vector spaces. It seems to bear little re-
semblance to the study of algebra at the high
school level, although the fields of real numbers
and complex numbers and the various rings of
polynomials underlie the theory of algebra, and
properties of integral domains and groups explain
why certain equations can be solved and others
not. Yet we recognize algebra as the study of struc-
tures by the properties we ascribe to operations on
real numbers and polynomials. Consider the fol-
lowing problem:

Factor 3x2 + 4ax – 132a2.

The conception of variable represented here is not
the same as any previously discussed. There is no
function or relation; the variable is not an argu-
ment. There is no equation to be solved, so the
variable is not acting as an unknown. There is no
arithmetic pattern to generalize.

The answer to the factoring question is (3x +
22a)(x – 6a). The answer could be checked by
substituting values for x and a in the given poly-
nomial and in the factored answer, but this is al-
most never done. If factoring were checked that
way, there would be a wisp of an argument that
here we are generalizing arithmetic. But in fact,
the student is usually asked to check by multiply-
ing the binomials, exactly the same procedure that
the student has employed to get the answer in the
first place. It is silly to check by repeating the
process used to get the answer in the first place,
but in this kind of problem students tend to treat
the variables as marks on paper, without numbers
as a referent. In the conception of algebra as the
study of structures, the variable is little more than
an arbitrary symbol.

There is a subtle quandary here. We want students
to have the referents (usually real numbers) for
variables in mind as they use the variables. But we
also want students to be able to operate on the
variables without always having to go to the level
of the referent. For instance, when we ask students

Then simplify (the number of steps required de-
pends on the level of student and preference of
the teacher):

5x = 37

Now solve this equation in some way, arriving at x
= 7.4. The “certain number” in the problem is 7.4,
and the result is easily checked.

In solving these kinds of problems, many students
have difficulty moving from arithmetic to algebra.
Whereas the arithmetic solution (“in your head”) in-
volves subtracting 3 and dividing by 5, the algebraic
form 5x + 3 involves multiplication by 5 and addi-
tion of 3, the inverse operations. That is, to set up
the equation, you must think precisely the opposite
of the way you would solve it using arithmetic.

In this conception of algebra, variables are either
unknowns or constants. Whereas the key instruc-
tions in the use of a variable as a pattern general-
izer are translate and generalize, the key instruc-
tions in this use are simplify and solve. In fact,
“simplify” and “solve” are sometimes two different
names for the same idea: For example, we ask stu-
dents to solve x – 2 = 5 to get the answer x = 7
or x = –3. But we could ask students, “Rewrite x –
2 = 5 without using absolute value.” We might
then get the answer (x – 2)2 = 25, which is another
equivalent sentence.

Polya (1957) wrote, “If you cannot solve the pro-
posed problem try to solve first some related prob-
lem” (p. 31). We follow that dictum literally in solv-
ing most sentences, finding equivalent sentences
with the same solution. We also simplify expres-
sions so that they can more easily be understood
and used. To repeat: simplifying and solving are
more similar than they are usually made out to be.

Conception 3: Algebra as the Study of
Relationships among Quantities
When we write A = LW, the area formula for a rec-
tangle, we are describing a relationship among
three quantities. There is not the feel of an un-
known, because we are not solving for anything.
The feel of formulas such as A = LW is different
from the feel of generalizations such as 1 = n
(1/n), even though we can think of a formula as a
special type of generalization.

Whereas the conception of algebra as the study of
relationships may begin with formulas, the crucial
distinction between this and the previous concep-

tions is that, here, variables vary. That there is a
fundamental difference between the conceptions is
evidenced by the usual response of students to the
following question:

What happens to the value of 1/x as x gets
larger and larger?

The question seems simple, but it is enough to baf-
fle most students. We have not asked for a value of
x, so x is not an unknown. We have not asked the
student to translate. There is a pattern to generalize,
but it is not a pattern that looks like arithmetic. (It
is not appropriate to ask what happens to the value
of 1/2 as 2 gets larger and larger!) It is fundamen-
tally an algebraic pattern. Perhaps because of its in-
trinsic algebraic nature, some mathematics educa-
tors believe that algebra should first be introduced
through this use of variable. For instance, Fey and
Good (1985, p.48) see the following as the key
questions on which to base the study of algebra:

For a given function f(x), find—

1.  f(x) for x = a;
2.  x so that f(x) = a;
3.  x so that maximum or minimum values of

f(x) occur;
4.  the rate of change in f near x = a;
5.  the average value of f over the interval

(a,b).

Under this conception, a variable is an argument
(i.e., stands for a domain value of a function) or a
parameter (i.e., stands for a number on which
other numbers depend). Only in this conception do
the notions of independent variable and dependent
variable exist. Functions arise rather immediately,
for we need to have a name for values that depend
on the argument or parameter x. Function notation
(as in f(x) = 3x + 5) is a new idea when students
first see it: f(x) = 3x + 5 looks and feels different
from y = 3x + 5. (In this regard, one reason y = f(x)
may confuse students is because the function f,
rather than the argument x, has become the para-
meter. Indeed, the use of f(x) to name a function,
as Fey and Good do in the quote above, is seen by
some educators as contributing to that confusion.)

That variables as arguments differ from variables as
unknowns is further evidenced by the following
question:

Find an equation for the line through (6,2) with
slope 11.

The usual solution combines all the uses of vari-
ables discussed so far, perhaps explaining why
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some students have difficulty with it. Let us analyze
the usual solution. We begin by noting that points
on a line are related by an equation of the form

y = mx + b.

This is both a pattern among variables and a for-
mula. In our minds it is a function with domain
variable x and range variable y, but to students it is
not clear which of m, x, or b is the argument. As a
pattern it is easy to understand, but in the context
of this problem, some things are unknown. All the
letters look like unknowns (particularly the x and
y, letters traditionally used for that purpose).

Now to the solution. Since we know m, we substi-
tute for it:

y = 11x + b

Thus m is here a constant, not a parameter. Now
we need to find b. Thus b has changed from para-
meter to unknown. But how to find b? We use one
pair of the many pairs in the relationship between
x and y. That is, we select a value for the argument
x for which we know y. Having to substitute a pair
of values for x and y can be done because y = mx
+ b describes a general pattern among numbers.
With substitution,

2 = 11 • 6 + b,

and so b = –64. But we haven’t found x and y
even though we have values for them, because
they were not unknowns. We have only found the
unknown b, and we substitute in the appropriate
equation to get the answer

y = 11x – 64.

Another way to make the distinction between the
different uses of the variables in this problem is to
engage quantifiers. We think: For all x and y, there
exist m and b with y = mx + b. We are given the
value that exists for m, so we find the value that
exists for b by using one of the “for all x and y”
pairs, and so on. Or we use the equivalent set lan-
guage: We know the line is {(x,y): y = mx + b} and
we know m and try to find b. In the language of
sets or quantifiers, x and y are known as dummy
variables because any symbols could be used in
their stead. It is rather hard to convince students
and even some teachers that {x: 3x = 6} = {y: 3y =
6}, even though each set is {2}. Many people think
that the function f with f(x) = x + 1 is not the same
as the function g with the same domain as f and
with g(y) = y + 1. Only when variables are used as

arguments may they be considered as dummy vari-
ables; this special use tends to be not well under-
stood by students.

Conception 4: Algebra as the Study of
Structures
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and complex numbers and the various rings of
polynomials underlie the theory of algebra, and
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not. Yet we recognize algebra as the study of struc-
tures by the properties we ascribe to operations on
real numbers and polynomials. Consider the fol-
lowing problem:

Factor 3x2 + 4ax – 132a2.

The conception of variable represented here is not
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ing the binomials, exactly the same procedure that
the student has employed to get the answer in the
first place. It is silly to check by repeating the
process used to get the answer in the first place,
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Then simplify (the number of steps required de-
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the teacher):
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For example, consider the question of paper-and-
pencil manipulative skills. In the past, one had to
have such skills in order to solve problems and in
order to study functions and other relations. Today,
with computers able to simplify expressions, solve
sentences, and graph functions, what to do with
manipulative skills becomes a question of the im-
portance of algebra as a structure, as the study of
arbitrary marks on paper, as the study of arbitrary
relationships among symbols. The prevailing view
today seems to be that this should not be the major
criterion (and certainly not the only criterion) by
which algebra content is determined.

Consider the question of the role of function ideas
in the study of algebra. It is again a question of the
relative importance of the view of algebra as the
study of relationships among quantities, in which
the predominant manifestation of variable is as ar-
gument, compared to the other roles of algebra: as
generalized arithmetic or as providing a means to
solve problems.

Thus some of the important issues in the teaching
and learning of algebra can be crystallized by cast-
ing them in the framework of conceptions of alge-
bra and uses of variables, conceptions that have
been changed by the explosion in the uses of
mathematics and by the omnipresence of comput-
ers. No longer is it worthwhile to categorize alge-
bra solely as generalized arithmetic, for it is much
more than that. Algebra remains a vehicle for solv-
ing certain problems but it is more than that as
well. It provides the means by which to describe
and analyze relationships. And it is the key to the
characterization and understanding of mathemati-
cal structures. Given these assets and the increased
mathematization of society, it is no surprise that al-
gebra is today the key area of study in secondary
school mathematics and that this preeminence is
likely to be with us for a long time.
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to derive a trigonometric identity such as 2sin2x – 1 =
sin4x – cos4x, we do not want the student to think
of the sine or cosine of a specific number or even
to think of the sine or cosine functions, and we are
not interested in ratios in triangles. We merely
want to manipulate sin x and cos x into a different
form using properties that are just as abstract as
the identity we wish to derive.

In these kinds of problems, faith is placed in prop-
erties of the variables, in relationships between x’s
and y’s and n’s, be they addends, factors, bases, or
exponents. The variable has become an arbitrary
object in a structure related by certain properties. It
is the view of variable found in abstract algebra.

Much criticism has been leveled against the prac-
tice by which “symbol pushing” dominates early
experiences with algebra. We call it “blind” manip-
ulation when we criticize; “automatic” skills when
we praise. Ultimately everyone desires that stu-
dents have enough facility with algebraic symbols
to deal with the appropriate skills abstractly. The
key question is, What constitutes “enough facility”?

It is ironic that the two manifestations of this use
of variable—theory and manipulation—are often
viewed as opposite camps in the setting of policy
toward the algebra curriculum, those who favor
manipulation on one side, those who favor theory
on the other. They come from the same view of
variable.

Variable in Computer Science
Algebra has a slightly different cast in computer
science from what it has in mathematics. There is
often a different syntax. Whereas in ordinary alge-
bra, x = x + 2 suggests an equation with no solu-
tion, in BASIC the same sentence conveys the re-
placement of a particular storage location in a
computer by a number two greater. This use of
variable has been identified by Davis, Jockusch,
and McKnight (1978, p. 33):

Computers give us another view of the basic mathe-
matical concept of variable. From a computer point
of view, the name of a variable can be thought of
as the address of some specific memory register,
and the value of the variable can be thought of as
the contents of this memory register.

In computer science, variables are often identified
strings of letters and numbers. This conveys a dif-
ferent feel and is the natural result of a different

setting for variable. Computer applications tend to
involve large numbers of variables that may stand
for many different kinds of objects. Also, comput-
ers are programmed to manipulate the variables,
so we do not have to abbreviate them for the pur-
pose of easing the task of blind manipulation.

In computer science, the uses of variables cover all
the uses we have described above for variables.
There is still the generalizing of arithmetic. The
study of algorithms is a study of procedures. In
fact, there are typical algebra questions that lend
themselves to algorithmic thinking:

Begin with a number. Add 3 to it. Multiply it by
2. Subtract 11 from the result.…

In programming, one learns to consider the vari-
able as an argument far sooner than is customary
in algebra. In order to set up arrays, for example,
some sort of function notation is needed. And fi-
nally, because computers have been programmed
to perform manipulations with symbols without
any referents for them, computer science has be-
come a vehicle through which many students
learn about variables (Papert 1980). Ultimately,
because of this influence, it is likely that students
will learn the many uses of variables far earlier
than they do today.

Summary
The different conceptions of algebra are related to
different uses of variables. Here is an oversimpli-
fied summary of those relationships:

Conception of algebra Use of variables

Generalized arithmetic Pattern generalizers
(translate, generalize)

Means to solve certain Unknowns, constants
problems (solve, simplify)

Study of relationships Arguments, parameters
(relate, graph)

Structure Arbitrary marks on paper
(manipulate, justify)

Earlier in this article, two issues concerning in-
struction in algebra were mentioned. Given the
discussion above, it is now possible to interpret
these issues as a question of the relative impor-
tance to be given at various levels of study to the
various conceptions.
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