ALGORITHMS
VERSUS
NUMBER SENSE

We are usually convinced more easily by reasons we
have found ourselves than by those which have oc-
curred to others.

—-Blaise Pascal

There still remain three studies suitable for free men.
Arithmetic is one of them.
—Plato

Tryanexperiment. Caleulate %s X %s. Don't read on until you have an answer.

If you are like most people who are a product of the American school
system, you probably got a pencil and paper, wrote the numbers down, and
performed the following algorithm for multiplication of fractions. First you
multiplied the numerators to get forty-eight. Then you multiplied the de-
nominators (rewriting the multiplication vertically and performing the mul-
tiplication algorithm for whole numbers) (o get 288. These actions resulted
in the fraction *¥ss, which you then reduced to % (perhaps even using sev-
eral steps here). To check yourself, you probably went back and repeated the
same actions and calculations; if you got the same answer twice, you as-
sumed your calculations were correct.

Now take out a piece of graph paper and draw a rectangle. Use this rect-
angle to show the multiplication that represents the problem and what you
did. Seeif you can find the rectangular arrays that represent the problems you
did as you calculated the lorty-eight and the 288, and then show in this rect-
angle the equivalence involved in reducing this fraction to Y. 1f this is diffi-
cult for you, the way the algorithm was taught to you has worked against your
own conceptual understanding of multiplication.

The algorithms for multiplying fractions are very difficult for children
to understand. Why? Well, just think how nonsensical these steps must seem
to them. They are struggling to understand what [ractions even mean. Fur-
thermore, they have often been taught—and therefore understand — the op-
eration of multiplication as repeated addition, and they struggle to find the
repeated addition when multiplying fractions. Finally, as they treat the num-
bers in the numerators and denominators as digits to perform the algorithm,
they lose sight of the quantities they are actually multiplying and make any
number of errors in calculating each of the separate pieces.
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FIGURE 6.1

16 X 18 = 288
Components of the
Algorithm

Liping Ma (1999) compared the way Chinese and American teachers
think about and teach the multiplication algorithms and how they work
with children who make place value mistakes. Most Chinese teachers ap-
proach the teaching of the multiplication algorithms conceptually.

For the whole number algorithm, they explain the distributive property
and break the problem up into the component problems: 16 X 18 = (10 +
6) X (10+8) =(6X8 + (6 X 10) + (10 X 8) + (10 X 10) = 48 + 60
+ 80 + 100. Once this conceptual understanding is developed, they asso-
ciate the steps in the algorithm with the component parts in the equation.
(Figure 6.1 shows these steps as rectangles within the larger array of 16 X
18.) In contrast, 70 percent of American teachers teach this algorithm as a
series of procedures and interpret children's errors as a problem with carry-
ing and lining up. They remind children of the “rules’— that they are mul-
tiplying by tens and therefore have to move their answer to the next column.
To help children follow the “rules” correctly, they often use lined paper and
suggest that children use zero as a placeholder.

To teach the multiplication algorithm for fractions, Chinese teachers
again approach it conceptually, focusing on both the distributive and the as-
sociative properties. They might explain that %s is equivalent to 6 X Ys and
s is equivalent to 8 X Yis and that therefore % X %5 is equivalent 10 6 X
8 X e X Yis, or 48 X Yhss. In contrast, American teachers are more likely
to teach it procedurally, with rules like multiply the numerators, then the
denominators, then reduce.
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One could argue that if we taught the algorithms conceptually, as Li-
ping Ma advocates, more understanding would develop. This is probably
true. But should the algorithm be the goal of computation instruction? In to-
day’s world, do we want learners to have to rely on paper and pencil? 1s the
algorithm the fastest, most efficient way to compute? When are algorithms
helpful? When does one pull out a calculator? What does it mean to com-
pute with number sense?

Ann Dowker (1992) asked forty-four mathematicians to do several typ-
ical multiplication and division computation problems and assessed their
strategies. Only 4 percent of the responses, across all the problems and across
all the mathematicians, were solved with algorithms. The mathematicians
looked at the numbers first, then found efficient strategies that fit well with
the numbers. They made the numbers friendly, and they played with rela-
tionships. Interestingly, they also varied their strategies, sometimes using
different strategies for the same problems when they were asked about them
on different days! They appeared to pick a strategy that seemed appropriate
to the numbers and that was prevalent in their minds at that time; they
searched for efficiency and elegance of solution; they made numbers friendly
(often by using landmark numbers); and they found the process creative
and enjoyable.

How might mathematicians solve %is X %s? There are many ways. One
could, for example, swap the numerators. This makes the problem %6 X %s,
or reduced to /2 X ': the answer this way can be arrived at mentally. Why
does this work? What does it mean to multiply %e by ¥is? Figure 6.2 shows
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FIGURE 6.2

%6 X Y

A patio, 16 feet by

18 feet. %is of the tiles
have been laid so far
and % of these have
been mortared in place.
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FIGURE 6.3
86 X g

this multiplication in a rectangular array. Imagine square tiles being laid to
build a patio, 16 feet by 18 feet. Next, imagine that %s of the tiles (8 out of
18 columns) have been laid so far and that %s of these (6 out of 16 rows)
have been mortared in place. The small rectangular area that is now com-
plete is a 6-by-8 array (48 tiles). This small array fits into the larger 16-by-
18 array (288 tiles) six times. Thus, %is X %s = %.

Now look at this in a different way. Imagine the smaller array turned 90
degrees: it now has 6 columns and 8 rows (see Figure 6.3). The relationship
to the whole is still the same, but the problem is now %s X %s. or %4 X i,
which of course is easily calculated mentally. Swapping numerators and re-
ducing if needed is a powerful mental math strategy that is often helpful. For
example, try it with % X %, or % X %. The first problem becomes % X %. or
7. The second becomes % X %, or '4. And it is easy 1o see in arrays how the
smaller rectangular array, formed by the numerators, just gets turned: (4 X
) X (3 X W) as (4 X 3) X (% X ) oras (4 X ') X (3 X Y%). See Figures
6.4a—6.4c.

This strategy is of course only helpful in some cases. But there are many
wonderful mental math strategies if one has a deep understanding ol num-
ber and operation. Calculating with number sense, as a mathematician,
means having many strategies at your disposal, and looking to the numbers
first, before choosing a strategy. Let’s look at a few other strategies.

How about getting rid of [ractions altogether? For 3% X 14, we could
double the 3% to get rid of the fraction and thus halve the 14— turning the
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FIGURE 6.4a
(3 X Y5) X (4 X %)

FIGURE 6.4b
(3 x4 X (%X

FIGURE 6.4c¢
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problem into 7 X 7! Now we have the answer of 49 mentally. For 24 x 16,
we could get rid of the fraction by multiplying 2V by 4 and dividing the 16
by 4. This turns the problem into 9 X 4, or 36. Try using this strategy to
compute 3% X 45. Did you get rid of the fraction by multiplying 3% by 5?
Great! And then you divided 45 by 5? Great! Now you have 16 X 9. We
could keep on doubling and halving 16 X0 =8 X 18 =4 x36 =2 x 72
= 144! Or, since we know that 16 X 10 = 160, all we have 10 do is sub-
tract the extra 16 to get the answer of 144

We can also use this strategy 1o get rid of decimals. How abour 8 X
3507 If we multiply the .8 by 10 and divide the 350 by 10, we turn the prob-
lem into 8 X 35. Halving and doubling, we get 4 X 70: 280! Or we could
think of 8 as %, turning the decimal into a fraction; %5 of 350 is 70; once
again we get 4 X 70. All of these strategies work because of the associative
property of multiplication. We can do whatever we want first 1o make the
problems easier:

8 X350 =7
8 X 350 =4 X 70 = 280

8 X350 = (8 X Vo) X (10 X 35)
=8 X (Yo X 10) X 35 = X 4 X 2 X 35

48><35o=‘%><350:(4><%)x350=4><<%><350)

Note how all of these alternative, creative ways can be done so quickly —
in most cases mentally. If paper and pencil are used, it is only 1o keep track.
Playing with numbers like this is based on a deep understanding of number,
landmark numbers, properties, and operations. And it characterizes (rue
number sense. In contrast, a child who is taught to use the algorithm to mul-
tiply .8 X 350 stops thinking. He sacrifices the relationships in order to treat
the numbers as digits. And any teacher ol middle school children will attest
to the difficulties children have as they try to complete each of the multipli-
cation pieces, carry appropriately, and determine where the decimal point
goes in the answer. .

Algorithms can be very helpful when multiplying or dividing large,
nonfriendly numbers, or when working with messy fractions that can't eas-
ily be simplified. But in today’s world, isnt that when we take out the calcu-
lator anyway? If we have to reach for paper and pencil to perform the arith-
metic, why not reach for the calculator?

THE HISTORY OF ALGORITHMS

Through time and across cultures many diffevent algorithms have been used
for multiplication. For example, for many years Egyptians used an algorithim
based on doubling, To multiply 28 X 12 (or 12 X 28), they would calculate



1 X28=28,2X28=56,4X28=112,8%X28= 224, and so on. As
soon as they had calculations for numbers that added up to the original mul-
tiplier (in this case 12), they would stop doubling and add: here, 8 + 4 =
12, therefore 112 and 224 added together (336) equals 12 X 28.

Russian peasanis used a halving and doubling algorithm. To multiply
28 X'12, they would first halve the 28 and double the 12, getting 14 X 24,
Next they would repeat the procedure, getting 7 X 48. When an odd num-
ber (like 7 in this case) appeared, resulting in a remainder when halved, they
would round down, thus using 3 (instead of 3%2) X 96 and 1 (instead of 1'4)
X 192. They continued halving and doubling until they reached the last
problem in the series (1 X n), in this case 1 X 192. Then they added up all
the factors with odd multipliers—48 + 96 + 192 in this case—and arrived
at the answer—28 X 12 = 336.

In the early part of the ninth century, the greal Arab mathematician Mu-
hammad ibn Musa al-Khwarizmi invented the algorithms for multiplication
and division that we teach in most schools today. (In Latin his name was Al-
gorismus—hence the term algorithm.) Their beauty was that they were gen-
eralized procedures that could be used as efficient computation strategies
lor all problems—even messy ones with many digits. During this time, cal-
culations using large numbers were needed both in the marketplace and for
merchants’ accounting purposes. Because calculations on the abacus were
actions, there was no written record of the arithmetic, only the answer. And
only the intelligentsia, practiced in the art of the abacus, could calculate.

Denis Gued] (1996) describes a bit of the history:

In the Middle Ages computations were carried out on an abacus,
also called a computing table, a calculating device resembling a
table with columns or ruled horizontal lines: digits were repre-
sented by counters, or apices. From the twellth century on, this type
of abacus was progressively replaced by the dust board as a tool
ol calculations. This development did not come about without a
struggle between those who, evoking the ancient Greek mathe-
matician Pythagoras, championed the abacus and those who be-
came masters of algorism, the new Arabic number system. In this
competition between the Ancients and Moderns, the former saw
themselves as the keepers of the secrets of the art of computation
and the defenders of the privileges of the guild of professional cal-
culators . . . [while] the new system indisputably marked the de-
mocratization of computation. (53-54)

With the invention of the algorithms and the dissemination of multiplica-
tion tables to use while performing them, even the most complex computa-
tions were possible, and written records of the calculations could be kept.

Schools soon set about to teach the procedures. In the Renaissance in
Europe the manipulation of numbers and the practice of arithmetic were
signs of advanced learning; those who knew how to multiply and divide
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with algorithms were guaranteed a prolessional career. In the Musee de
Cluny, in Paris, there is a sixteenth-century tapestry depicting Lady Arith-
metic teaching the new calculation methods to gilded youth. (A photograph
of this is used as the lead photo in this chapter.)

But today’s world is different. Human beings have continued through the
centuries to design and build tools with which to calculate, {rom the slide
rule, in 1621, to the first mechanical calculator, invented by Pascal in 1642,
to the handheld calculator, in 1967 to today’s graphic calculators. The World
Wide Web even provides virtual calculators (Guedj 1996). Difficult compu-
tations, originally solved by algorithms, are now done with these tools.

There have also been many different algorithms for computation with
fractions. As described in Chapter 3, in the Stone Age there was no need for
fractions; fractions seem to have developed during the Bronze Age. Egyp-
tians during this period recognized only unit fractions (fractions with nu-
merators of one) and the fraction % Thus they would have understood the
[ractions %s or s only as six loaves shared with sixteen people and eight
loaves shared with eighteen people, representing %s as ¥ + Y and Yis as ¥
+ %. Adding or subtracting these amounts is easy. No common denomina-
tors are needed. You just string all the unit fractions together: % + Y + %
+h=%+%+ Y

Fractions were multiplied by doubling (or tripling) one of the denom-
inators and divided by doubling (or tripling) one of the numerators, For ex-
ample, to multiply % X %, one would just double the 3 or triple the 2 to get
an answer of . To multiply ' X %, one would double the 3 twice since 1
is hall of A—the 3 becomes 0, then the 6 becomes 12. Thus the answer is
/2. To divide ' by %, one would double the numerator. Thus the answer is
. To multiply %s X %s, the problem at the beginning of this chapter, Egyp-
tians would have used the distributive property and done the lollowing: (14
TR XA+ ) =%+ Yor + Yo + Yo, Imagine how difficult it would be
to do very complex problems with the Egyptian algorithm!

Had Mesopotamian mathematics, like that of the Nile Valley, been based
on the addition of integers and unit fractions, we might not have seen dec-
imal calculations until the Renaissance! However, their neighbors, the Baby-
lonians (as also described in Chapter 3), had developed a base-sixty number
system. They used this to represent [ractional amounts, sexagesimals. Knowl-
edge of how place value could be used allowed the Babylonians 1o do all
their calculating of fractions in the same way as they did whole numbers, 1ak-
ing care of the decimal (really, sexagesimal) point only at the end.

The handheld calculator has now replaced paper-and-pencil algorithms.
Does this mean we don't need to know how to calculate? Of course not. To
be successful in today’s world, we need a deep conceptual understanding of
mathematics. We are bombarded with nurabers, statistics, advertisements,
and similar data every day— on the radio, on television, and in newspapers.
We need good mental ability and good number sense in order to evaluate
advertising claims, estimate quantities, efficiently calculate the numbers we



deal with every day and judge whether these calculations are reasonable,
add up restaurant checks and determine equal shares, interpret data and sta-
tistics, and so on. We need to be able to move back and forth from fractions
to decimals to percents. We need a much deeper sense of number and op-
eration than ever beflore— one that allows us to both estimate and make ex-
act calculations mentally. How do we, as teachers, develop children’s ability
to do this? How do we engage them in being young mathematicians at work?

TEACHING FOR NUMBER SENSE

Each day at the start of math workshop, Dawn Selnes, a fifth-grade teacher in
New York City, does a short minilesson on computation strategies. She usu-
ally chooses five or six related problems and asks the children to solve them
and share their strategies with one another. Crucial to her choice of prob-
lems is the relationship between them. She picks problems that are likely to
lead to a discussion of a specific strategy. She allows her students to con-
struct their own strategies by decomposing numbers in ways that make
sense Lo them. Posted around the room are signs the children have made
throughout the year as they have developed a repertoire of strategies for op-
erations with fractions. One reads, “Make use of tens”: another, “Halves &
doubles™; a third, “Get rid of the fraction™: a fourth, “Use all the factors in
pretty ways.”

On the chalkboard today is the string of problems the children are dis-
cussing. Although the string ends with [ractions, it begins with a few whole
number multiplication problems, and Alice is describing how she solved 9 X
30.“1 just used all the factors,” she explains. “I thought of it as nine times
three times ten. I knew that nine times three was twenty-seven, so times ten
is two hundred and seventy.”

Dawn asks for other strategies, but most of the children have treated the
problem similarly, so Dawn goes to the next problem in her string, 15 X 18.
Several children use the distributive property here. Tom’s strategy is tepre-
sentative ol many, and several children nod in agreement as he explains how
he did 10 X 18 and got 180, and then took half of that to figure out the an-
swerto 5 X 18. He completes the calculation by adding 180 to 90, for an
answer of 270. Lara’s strategy is similar, if not as elegant, but it makes sense
to her. She multiplies using tens, too, but she breaks up the eighteen instead
ol the fifteen and multiplies 10 X 15, and then 8 X 15. These two products
together also result in 270.

Ned agrees with their answer but with a smile he says, “Yeah, but you
didn’t even have to calculate. IUs the same as nine times thirty, because the
thirty is halved, and the nine is doubled!”

Although all the children in the class are comfortable with this doubling
and halving strategy and understand why it works (having explored it thor-
oughly with arrays earlier in the year), they have not all thought to use it,
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because Dawn has turned the numbers around. It might have been more ob-
vious il she had written 18 X 15 directly underneath 9 X 30. But she wants
to challenge them to think.

Now Dawn moves to fractions. She writes 474 X 60 as the third prob-
lem. Several children immediately raise their hands, but Dawn waits for
those still working to finish. Alice is one of them, so she asks her to share
first. “What did you do, Alice?”

‘I split it into four times sixty first,” Alice begins, “and 1 did that by do-
ing four times six equals twenty-four. Then times ten is two hundred and
forty. Then 1 knew that a half of sixty was thirty. So thirty plus two hundred
and forty is two hundred and seventy.”

“My way is kind of like yours,” another classmate, Daniel, responds,
“but T subtracted.”

“But then you would get the wrong answer,” Alice tells him, looking
puzzled.

“No, what T mean is 1 did five times six times ten. That was three hun-
dred. Then I subtracted the thirty.”

“Where did you get the five?” Several of his classmates are also now
puzzled.

“That was easier for me than four and a hall. But that’s why [ took thirty
away at the end,” Daniel explains, very proud of his strategy.

Dawn checks to see whether everyone understands by asking who can
paraphrase Daniel’s strategy. Several children do so, and Dawn seems satis-
fied that the group appears to understand. “That’s a really neat strategy, isn't
it?” Daniel beams, and Dawn turns to Ned, “And what did you do Ned? Your
hand was up so quickly. Did you see a relationship to another problem
again?”

Ned laughs, “Yep. Just doubling and halving again. It’s the same as nine
times thirty. The nine was halved and the thirty was doubled.”

Several children make surprised exclamations. Dawn smiles and goes
to the next problem: 2% X 120. This time everyone’s hand is up quickly,
and Dawn calls on Tanya, who has not yet shared. Tanya, as well as the rest
of the class, has made use of the doubling and halving relationships in this
string of problems.

The other strategies that have previously been offered are also powerful
strategies, and Dawn does not want to imply that they should be replaced
by doubling and halving. She is only trying to help her children think about
relationships in problems, to look to the problems first before calculating.
To ensure that this happens she follows with the next two problems: 15 X
36, then 15% X 36. For the first, most students see the relationship between
itand 30 X 18. Since they have already calculated 15 X 18, they know they
just need to double that answer. A few children solve it by doing 10 X 36
to get 360, halving that to get 180, and then adding these partial products
for an answer of 540. For the second problem everyone uses the distribu-
tive property, adding 18 more for an answer of 558.



Dawn ends her string with a very difficult problem: 15Y% X 4Y%. She asks
the children to write their strategy and solution down in their math journal
and then to turn to the person sitting next to them on the rug and share it.
What strategies will the children use? How solid is their understanding? Most
complete the problem successfully, but not all children finish, and some
make calculation errors. But they show a rich variety of strategies that are
evidence of deep understanding and good number sense (see Figure 6.5).

These young mathematicians are composing and decomposing flexibly
as they multiply fractions. They are inventing their own strategies. They are
looking for relationships between the problems. They are looking at the
numbers first before they decide on a strategy.

Children don't do this automatically. Dawn has developed this ability in
her students by focusing on computation during minilessons with strings of
related problems every day. She has developed the big ideas and models
through investigations, but once this understanding has been constructed,
she hones computation strategies in minilessons such as this one.

Traditionally, mathematics educators thought teaching for number
sense meant helping children connect their actions 1o real objects. We used
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base-ten blocks and trading activities to help children understand regroup-
ing. We built arrays with base-ten materials and looked at the dimensionsand
the area. We used Cuisennaire rods and fraction strips to develop a connec-
tion for children between the actions of regrouping the objects, making
equivalent fractions, and the symbolic notation in the algorithms. We talked
about the connection between the concrete, the pictorial, and the symbolic.
But all of these pedagogical techniques were used to teach the algorithms.
The goal of arithmetic teaching was algorithms, albeit with understanding,

In the 1980s, educators began to discuss whether the goal of arithmetic
computation should be algorithms at all. Constance Kamii’s research has led
her to insist that teaching algorithms is in fact harmful to children’s mathe-
matical development (Kamii and Dominick 1998). First, she examined chil-
drens invented procedures for whole number multiplication and division
and found that childrens procedures for multiplication always went from
left to right, [rom the largest units to the smallest. With division, childrens

| A
155 4™

SN

2

FIGURE 6.6  15% X 4'4: One Child’s Attempt at the Algorithm



procedures went from the smallest units to the largest, from right to left. Yet
the algorithms require opposite procedures: with multiplication one statts
with the units and works right to left; with division, one starts with the
largest unit (hundreds, for example) and works right to left.

Is the situation any different with fractions? Only one child in Dawn’s
class used the algorithm, and he had been taught it at home. He turned the
probleminto 3% X %2 = *"4 (see Figure 6.6). This procedure was obviously
difficult for him, and he made many errors along the way. We might also
wonder if he knows why this procedure works. When algorithms are taught
as procedures to use for any and all problems, children necessarily give up
their own meaning making in order to perform them. The algorithms hin-
der children’s ability to construct an understanding of the distributive and
associative properties of multiplication, which underlie algebraic computa-
tion. And worse, they require that children see themselves as proficient
users of someone else’s mathematics, not as mathematicians.

Kamii's data and her strong arguments from a developmenral perspec-
tive are convincing, and many educators have begun to allow children to
construct their own computation strategies. This isn't enough, however. Al-
though their invented strategies do become more efficient over time, these
strategies are remarkably similar, and many of them are cumbersome and
inefficient.

Over the last seven years or so Mathematics in the City has looked se-
riously at how to develop in students a repertoire of efficient computation
strategies that are based on a deep understanding of number sense and op-
eration and that honor children's own constructions. The next chapter de-
scribes the techniques we have been using and the strategies we try to de-
velop for fraction and decimal computation.

SUMMING UP . . .

Algorithms were developed in the Middle Ages by the Arab mathematician
al-Khwarizmi. There was also a long period when computations were per-
lormed with unit fractions and/or sexagesimals before common fraction al-
gorithms became accepted. The use of algorithms brought about a democ-
ratization ol computation; people no longer had to rely on the select few
who were competent users of the abacus. When algorithms appeared, there
was political tension between those who wanted to hold on to the abacus
and those who wanted o learn the new methods. Interestingly, a similar po-
litical situation exists today. As schools have begun to reform their teaching,
as algorithms have been replaced with mental math strategies and calculat-
ing with number sense, arguments have hroken out between those who hght
to maintain the “old” math and those who favor reform. Many newspaper
articles play into the fear that children will not be able o compute. This fear
is based on uninformed, often mistaken, notions ol the reform. Parents are
products ol the old education, and therelore they define mathematics as the
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skills they were taught. When they don't see their children learning what
they believe to be the goals of mathematics— the algorithms—they assume
that nothing is being learned. Many of them have called the new mathemat-
ics “fuzzy” or “solt” and described it as a “dumbing down.”

Algorithms—a structured series of procedures that can be used across
problems, regardless of the numbers—do have an important place in math-
ematics. Alter students have a deep understanding of number relationships
and operations and have developed a repertoire of computation strategies,
they may find it interesting to investigate why the traditional computation
algorithms work. Exploring strategies that can be used with larger, messy
numbers when a calculator is not handy is an interesting inquiry—one in
which the traditional algorithms can be employed. In these inquiries algo-
rithms can surface as a formal, generalized procedure—an alternative ap-
proach to use when the numbers are not nice. Often algorithms come up in
classroom discussions, too, because parents have taught them (o their chil-
dren and children attempt to use them without understanding why they
work. Exploring them and figuring out why they work may deepen chil-
dren’s understanding.

Algorithms should not be the primary goal of computation instruction,
however. Using algorithms, the same series of steps with all problems, is an-
tithetical to calculating with number sense. Calculating with number sense
means that one should look at the numbers first and then decide on a strat-
egy that is fitting—and efficient. Developing number sense takes time: al-
gorithms taught too early work against the development of good number
sense. Children who learn to think, rather than to apply the same proce-
dures by rote regardless of the numbers, will be empowered. They will not
see mathematics as a dogmatic, dead discipline, but as a living, creative one.
They will thrive on inventing their own rules, because these rules will serve
afterward as the foundation for solving other problems.

By abandoning the rote teaching of algorithms, we are not asking chil-
dren to learn less, we are asking them to learn more. We are asking them to
mathematize, to think like mathematicians, to look at the numbers belore
they calculate. To paraphrase Plato, we are asking children to approach math-
emaltics as “free men and women.” Children can and do construct their own
strategies, and when they are allowed to make sense of calculations in their
own ways, they understand better. In the words of the mathematician, Blaise
Pascal, “We are usually convinced more easily by reasons we have found
ourselves than by those which have occurred to others.”

In focusing on number sense, we are also asking teachers to think math-
ematically. We are asking them to develop their own mental math strategies
in order to develop them in their students. Once again teachers are on the
edge, not only the edge between the structure and development of mathe-
matics, but also the edge between the old and the new —between the expec-
tations of parents and the expectations of the new tests and the new curricula.

The backlash is strong, and walking this edge is difficult. Teachers need
support. Learning to teach in a way that supports mathematizing—in a way




that supports calculating with number sense —takes time. Sometimes, par-
ents have responded by hiring tutors to teach their children the algorithms—
a solution that has often been detrimental to children as they grapple to un-
derstand number and operation. Sometimes, as teachers have attempted to
reform their practice, children have been left with no algorithms and no rep-
ertoire of strategies, only their own informal, inefficient inventions. The re-
form will fail if we do not approach calculation seriously, if we do not pro-
duce children who can calculate efficiently. Parents will define our success
in terms of the their old notions of mathematics. They saw the goal of arith-
metic, of school mathematics, as calculation. They will look for what they
know, lor what they learned, for what they define as mathematics.
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