The purpose of the current study was to examine prosodic, linguistic, and/or cognitive processes. As such, cessation in sounded speech and can result from motoric, hypokinetic dysarthria as the primary type. Seven of the ten speakers fell in the mild to moderate range and three in the moderate-to-severe range. No between-group differences in speech rate, syllable number, or total speaking duration were observed, p>0.05 for all comparisons.

Method

Participants and Protocol
Habitual reading samples (The Caterpillar Passage; Patel et al., 2013) from 10 individuals with idiopathic PD (5 males, 5 females) and 10 older control speakers (5 males, 5 females) were recorded onto a portable digital audio recorder using a tabletop microphone. All speakers with PD presented with hypokinetic dysarthria as the primary type. Seven of the ten speakers fell in the mild to moderate range and three in the moderate-to-severe range. No between-group differences in speech rate, syllable number, or total speaking duration were observed, p>0.05 for all comparisons.

Acoustic analysis
Analyses were completed using PRAAT (Boersma & Weenink, 2015). For this process, spectrographic and waveform displays were used to identify silent intervals in the connected speech samples. These intervals were identified and categorized.

Categorization
Each pause was identified as being either between- or within-words. Silent intervals between-words were categorized as either related or unrelated to the syntax of the passage. Operational definitions are given in Table 1. Silent intervals within-words were categorized as unrelated to syntax. Silent intervals that coincided with a perceptually identifiable inspiratory breath were also identified. The phonetic context surrounding each silent interval was categorized by the preceding and subsequent phoneme manner. Phoneme manner categories are represented and defined in Table 2.

Analysis
Silent intervals that were categorized as syntactically unrelated, were not associated with a disfluency, and were not associated with inspiration were examined in the current study. Due to low number of occurrences in the passage, silent intervals associated with a preceding or subsequent affricate were excluded. Additionally, due to low number of observations for the subsequent phoneme manner category, the fricative and sonorant consonant categories were combined to form a continuants category.

Results and Discussion

The individuals with PD exhibited an overall longer duration of short silent intervals compared to control participants (Figures 2 & 3). Additionally, the participants in the PD group produced fewer silent intervals that coincided with a subsequent stop consonant than control speakers (Figures 4 & 5). Results suggest short silent intervals that are unrelated to syntactic boundaries, prosodic emphasis, or an inspiratory breath are slightly longer for speakers with PD than healthy controls. This may result from speech timing deficits associated with basal ganglia dysfunction secondary to PD, reflecting a subtle disruption in speech fluency or articulation.

References

Mastronardi, P., & Whitenack, J. J. (2014). Voiceless stop gap interval duration by stop consonant for control (CN, left panel) Parkinson Disease (PD, right panel) and Control (CN, left panel) groups.

Figure 1. Histogram of silent intervals at boundaries both related and unrelated to syntax for the control (CN) and Parkinson Disease (PD) groups.

Figure 2. Fixed effect estimates and standard error for the number of short silent intervals that were preceded by stops, fricatives, and sonorants for the control (CN, light gray) and Parkinson Disease groups (PD, dark gray). Note: * denotes p<0.05.

Figure 3. Fixed effect estimates and standard error for the duration of short silent intervals that were followed by continuant and stop consonants for the control (CN, light gray) and Parkinson Disease groups (PD, dark gray). Note: * denotes p<0.05.

Figure 4. Fixed effect estimates and standard error for the number of short silent intervals that were followed by continuant and stop consonants for the control (CN, light gray) and Parkinson Disease groups (PD, dark gray). Note: * denotes p<0.05.

*Note: CN = Control, PD = Parkinson Disease, *p<0.05.

Table 1. Between-Word Boundaries

<table>
<thead>
<tr>
<th>Boundary Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntactically Related*</td>
<td>A boundary coinciding with punctuation, between clauses, or between phrases.</td>
</tr>
<tr>
<td>Syntactically Unrelated</td>
<td>Within-word boundary</td>
</tr>
</tbody>
</table>

Table 2. Preceding and Subsequent Phoneme Manner

<table>
<thead>
<tr>
<th>Phoneme Manner Category</th>
<th>Manner Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>R, L, N, M, H, k</td>
</tr>
<tr>
<td>Affricate</td>
<td>Ap, t, q, B, S</td>
</tr>
<tr>
<td>Fricative</td>
<td>R, L, N, M, H, k</td>
</tr>
<tr>
<td>Sonorant</td>
<td>M, N, L, R, H, k</td>
</tr>
</tbody>
</table>

Figure 5. Histogram of voiceless stop gap interval duration by stop consonant for control (CN, left panel) Parkinson Disease (PD, right panel) and Control (CN, left panel) groups.

Anna Gravelin, B.S. & Jason Whitfield, Ph.D. CCC-SLP
Department of Communication Sciences and Disorders, Bowling Green State University

Anna Gravelin
gravela@bgsu.edu
Jason Whitfield
jawhitf@bgsu.edu

Visit the BGSMotorSpeechLab Web site to download a copy of the poster.