Department of Mathematics & Statistics
Bowling Green State University

Graduate Programs Brochure
Table of Contents

Introduction ... 2

Programs .. 3
- Master of Arts ... 3
- Master of Arts in Teaching ... 3
- MS in Applied Statistics ... 4
- PhD - Mathematics .. 4
- PhD - Statistics.. 5

Faculty ... 6
- Current ... 6
- Retired .. 7

Assistantship Funding ... 7

Additional Information .. 8
- Computing Facilities .. 8
- Location, Cultural & Recreational Activities 8
- Contact Information .. 8

Application Instructions .. 9
Introduction

Mathematics and statistics are growth areas in today's economy and in the nation's universities. New developments including big data, self-driving cars and other wonders of machine learning, high-throughput DNA sequencing and the digitization of biology, ubiquitous sensors collecting data and monitoring processes, the impact of statistics on professional sports, advances in cryptography and computer security, and large-scale climate modeling to understand global warming have all increased the need for a wide variety of pure and applied mathematics, statistics, bioinformatics, and all things computational. These are in addition to well-established areas of application such as biostatistics, insurance, finance, and many others. At the same time, rapid progress is being made on a large number of pure mathematics research topics, making this as exciting a time in mathematics research as ever.

Within higher education, we see consistent strong demand for engaging teachers at the university, college, and community college level. Because many other fields of study from biology to sociology to the humanities are incorporating more mathematics and statistics, there are more opportunities than ever for new classes to teach and for research collaborations across departments, and thus more contributions that can be made by new faculty in mathematics and statistics.

Our master's graduates are successful applied mathematicians, actuaries, consultants, statisticians, and teachers, and many have gone on to PhD programs in our department and at other schools including the University of Michigan and the Ohio State University. Our PhD graduates teach and do research at universities of all types and sizes, others work as statisticians in insurance or pharmaceutical companies, and a few work at the NSA (as far as we know).

None of these possible futures comes easily. You need to learn, to grow, and to see the world and its problems in new ways. We will help you develop your mathematics, statistics, and computational skills through a wide variety of courses available at the master's and PhD level.

The Department of Mathematics and Statistics at Bowling Green State University is well equipped with 19 full-time research faculty with Ph.D. degrees, to respond to the needs of mathematics and statistics students. In addition, there are 9 research faculty members in the Department of Computer Science, 5 in the Department of Applied Statistics and Operations Research, and 3 faculty members with specializations in mathematics education in the Department of Educational Curriculum and Instruction. The Department of Mathematics and Statistics is located in the Mathematical Sciences Building. Most classes we teach are held in this same building. In addition to formal courses, we offer a variety of informal seminars and a weekly colloquium where mathematicians and statisticians of international reputation present talks.

The placement record of our advanced degree recipients has been excellent. Our master's graduates of recent years are split fairly evenly between the teaching profession and business. Our first Ph.D. student graduated in 1975. Of the Ph.D. graduates since then, a recent survey found that they have obtained positions at four-year colleges, universities and research institutes or have jobs in financial firms, government, or industry commensurate with their training. Ph.D. dissertations have been written in the areas of algebra, complex analysis, functional analysis, combinatorics, inverse problems, scientific computation, probability, statistics, biostatistics and bioinformatics. Current research interests of the faculty include combinatorics, functional analysis, groups and geometries, inverse problems, mathematics education, operator theory, ordered algebraic structures, probability, statistics, biostatistics, bioinformatics, and scientific computation.
Programs

Please access graduate course descriptions online at: https://webapp.bgsu.edu/ClassSearch/search.htm

Graduate courses offered by the Department of Mathematics and Statistics use the prefix MATH. Graduate courses offered by the Department of Applied Statistics and Operations Research use the prefixes STAT and OR.

Master of Arts (MA)

The M.A. degree program is quite flexible and is designed to prepare for entry into the job market or for further study in a variety of fields such as mathematics, statistics, computer science, applied mathematics, operations research, economics and/or finance. Formal programs are offered in mathematics, statistics, and applied mathematics/scientific computation. Each program of study is based on a required core area supplemented by a combination of elective course work in mathematics, statistics and computer science.

The requirements for the M.A. degree are as follows:

1. Core course work. Completion of either (a), (b), or (c):
 (a) Mathematics: a two semester sequence in algebra (6330-6340) and a two semester sequence in real analysis (6650-6660)
 (b) Statistics Specialization: real analysis (5650 or 6650), a two-semester sequence in mathematical statistics (6410-6420), two additional courses from among 6440, 6450, 6460, 6470, 6460, 6710, 7400, 7450, 7460, 7570, 7580, and any approved 6820 topics course
 (c) Applied Mathematics/Scientific Computation Specialization: real analysis (6650), four courses in applied mathematics/scientific computation. (5390, 6180, 6200, 6680)

2. Completion of at least 30 semester hours of approved graduate level course work in mathematics and statistics, 18 hours of which must be at the 6000 level or higher.

3. Completion of a master’s thesis (counting for up to six credit hours) or successful completion of a written comprehensive examination based on the core course work.

Statistics students interested in Actuarial Science may augment their preparation for the SOA/CAS Examinations by taking the following courses: Exam P/I: 5410, 5420; Exam FM/2: 5250; Exam MLC/3L: 5260, 5270, 6250, 5450; Exam VEE in Applied Statistics: Stat 5020, Stat 5160.

Master of Arts in Teaching (MAT)

The M.A.T. degree in the field of mathematics is designed for those who plan a teaching career in secondary schools, two-year colleges, or liberal arts colleges. Individuals who receive the M.A.T. typically go on to assume leadership roles in secondary schools or small colleges. Admission to the program requires teacher certification and one year of teaching experience in mathematics. The program requires 35 hours of graduate credit with a minimum of 24 hours in mathematics and a minimum of 8 hours in education courses. Four of the mathematics courses must be selected from among Math 5010, 5020, 5110, 5470, 6020 and 6030.

In addition to the 35 hours of graduate credit, the M.A.T. degree also requires a research paper and a three-hour written comprehensive exam based on two mathematics content courses from the list above.
Master of Science in Applied Statistics (MS)

The M.S. in Applied Statistics degree is offered jointly by the Department of Mathematics and Statistics and the Department of Applied Statistics and Operations Research. This program prepares the student for a career as a statistician in business, industry or government or for further study toward a Ph.D. degree with specialization in applied statistics.

The requirements for the M.S. in Applied Statistics are as follows:

1. At least one 3-hour course at the 5000 or 6000 level offered by the Department of Mathematics and Statistics in the Fall and Spring Semesters.
2. At least 18 credit hours at the 6000 or 7000 level.
3. Plan I, thesis option. Completion of a master’s thesis (including three credit hours of Math 6990) and one additional elective from the courses listed above, for a total of at least 36 credit hours.
4. Plan II, comprehensive examination option. Successful completion of a comprehensive examination over the required courses listed above, plus Stat 6750, for a total of at least 33 credit hours.

The prerequisites for the program are undergraduate course work in advanced calculus, linear algebra, probability, and statistical inference, although some of this coursework can be completed on a remedial basis after admission.

PhD - Mathematics

The Ph.D. in Mathematics is a research degree. Students may enter the Ph.D. program if they have a Master’s degree from an accredited university and meet admission requirements at Bowling Green State University. Students who successfully complete the Master’s program at BGSU and wish to continue for the Ph.D. must also apply for admission to the Ph.D. program.

The doctoral program requires a minimum of 60 hours of graduate credit beyond the Master’s degree. A dissertation (minimum of 16 credit hours, maximum of 30 credit hours) consisting of original research is required and must be judged to be of publishable quality.

In addition to completing the requirements for one of the M.A. tracks above, students must obtain a grade of B or better from at least 8 of the following 12 courses:

<table>
<thead>
<tr>
<th>Algebra: 7330, 7340</th>
<th>Topology: 6510, 7520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis: 7650, 7660</td>
<td>Partial Differential Equations: 7120, 7130</td>
</tr>
<tr>
<td>Complex Analysis: 6610, 7620</td>
<td>Probability: 7410, 7420</td>
</tr>
</tbody>
</table>
A student becomes qualified to take the Ph.D. Preliminary Examination upon passing the Ph.D. Qualifying Examination. The Qualifying Examination is in two areas of the student’s choice from among the six areas listed in the table above. A student becomes a doctoral candidate upon passing the Ph.D. Preliminary Examination. The intent of the Preliminary Examination is to prepare students for their dissertation research. The Preliminary Examination consists of a written report and an oral exam.

PhD - Statistics

The Ph.D. in Statistics is a research degree. Students may enter the Ph.D. program if they have a Master’s degree from an accredited university and meet admission requirements at BGSU. Students who successfully complete the master’s program at BGSU and wish to continue for the Ph.D. must also apply for admission to the Ph.D. program.

The doctoral program requires a minimum of 60 hours of graduate credit beyond the Master’s degree. A dissertation (minimum of 16 credit hours, maximum of 30 credit hours) consisting of original research is required and must be judged to be of publishable quality.

In addition to completing the requirements for one of the M.A. tracks above, students must complete the following courses:

<table>
<thead>
<tr>
<th>Required Courses (B or better)</th>
<th>Six(6) Electives From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis: 6650-6660</td>
<td>Math 6440, 6450, 6460, 6470, 6480</td>
</tr>
<tr>
<td>Probability: 7410</td>
<td>Math 6710, 6720, 7400, 7420</td>
</tr>
<tr>
<td>Statistics 7450, 7460, 7570, 7580</td>
<td>Approved MATH 6000+ or STAT 6000+ letter-grade topic courses</td>
</tr>
</tbody>
</table>

A student becomes qualified to take the Ph.D. Preliminary Examination upon passing the Ph.D. Qualifying Examination. The Qualifying Examination is in two areas from among 7410/7420, 7450/7460, and 7570/7580. Students intending to write a dissertation on statistics are suggested to take the Qualifying Exam based on 7450/7460 and 7570/7580, while probability students are encouraged to take a Qualifying Exam based on 7410/7420 and either 7450/7460 or 7570/7580.

A student becomes a doctoral candidate upon passing the Ph.D. Preliminary Examination. The intent of the Preliminary Examination is to prepare students for their dissertation research. The Preliminary Examination consists of a written report and an oral exam.
Tenure-Track Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree, Institution</th>
<th>Position</th>
<th>Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert, James H.</td>
<td>Ph.D., Purdue University</td>
<td>Professor</td>
<td>Bayesian inference, statistical education, statistical methodology to sports</td>
</tr>
<tr>
<td>Undergraduate Coordinator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distinguished University Professor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bes, Juan</td>
<td>Ph.D., Kent State University</td>
<td>Professor</td>
<td>Operator theory, functional analysis</td>
</tr>
<tr>
<td>Chan, Kit</td>
<td>Ph.D., Univ. of Michigan</td>
<td>Professor</td>
<td>Functional analysis, function theory</td>
</tr>
<tr>
<td>Chen, Hanfeng</td>
<td>Ph.D., Univ. of Wisconsin-Madison</td>
<td>Professor</td>
<td>Data analysis, statistical inference, statistical genetics</td>
</tr>
<tr>
<td>Chair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, John Tuhao</td>
<td>Ph.D. University of Sydney</td>
<td>Professor</td>
<td>Biostatistics, multivariate analysis</td>
</tr>
<tr>
<td>Chou, So-Hsiang</td>
<td>Ph.D., University of Pittsburgh</td>
<td>Professor</td>
<td>Numerical analysis, fluid mechanics</td>
</tr>
<tr>
<td>Izzo, Alexander</td>
<td>Ph.D., University of California Berkley</td>
<td>Professor</td>
<td>Functional analysis, function algebras, several complex variables</td>
</tr>
<tr>
<td>Meel, David</td>
<td>Ed.D., University of Pittsburgh</td>
<td>Foundational Math Coordinator</td>
<td>Mathematics education</td>
</tr>
<tr>
<td>Nguyen, Diem</td>
<td>Ph.D., Texas A & M University</td>
<td>Associate Professor</td>
<td>Mathematics education</td>
</tr>
<tr>
<td>Ning, Wei</td>
<td>Ph.D., Syracuse University</td>
<td>Associate Professor</td>
<td>Empirical Likelihood; Change-point Analysis; Time Series Analysis; Sequential Analysis; Skew Distributions; Mixture Models; Causal Inference.</td>
</tr>
<tr>
<td>Rogers, Kimberly</td>
<td>Ph.D., Michigan State University</td>
<td>Assistant Professor</td>
<td>Mathematics education</td>
</tr>
<tr>
<td>Seubert, Steven M.</td>
<td>Ph.D. University of Virginia</td>
<td>Professor</td>
<td>Functional analysis, operator theory</td>
</tr>
<tr>
<td>Shang, Junfeng</td>
<td>Ph.D., University of Missouri</td>
<td>Professor</td>
<td>Model selection, multiple comparison, Bayesian analysis</td>
</tr>
<tr>
<td>Staic, Mihai</td>
<td>Ph.D., SUNY, Buffalo</td>
<td>Associate Professor</td>
<td>Algebra</td>
</tr>
<tr>
<td>Sun, Tong</td>
<td>Ph.D., Texas A & M University</td>
<td>Assistant Chair</td>
<td>Applied mathematics, numerical analysis</td>
</tr>
<tr>
<td>Wade, J. Gordon</td>
<td>Ph.D., Brown University</td>
<td>Associate Professor</td>
<td>Applied mathematics, inverse problems</td>
</tr>
<tr>
<td>Xie, Xiangdong</td>
<td>Ph.D., University of Utah</td>
<td>Associate Professor</td>
<td>Geometric Group Theory and Geometric Analysis.</td>
</tr>
<tr>
<td>Zirbel, Craig</td>
<td>Ph.D. Princeton University</td>
<td>Graduate Coordinator</td>
<td>Probability, stochastic processes, RNA bioinformatics</td>
</tr>
</tbody>
</table>
Retired Faculty

<table>
<thead>
<tr>
<th>Applebaum, Charles</th>
<th>McCleary, Stephen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blass, Josef</td>
<td>Moses, Barbara</td>
</tr>
<tr>
<td>Glass, Andrew M. W.</td>
<td>Neumann, Dean</td>
</tr>
<tr>
<td>Graue, L.C.</td>
<td>Norton, Vic</td>
</tr>
<tr>
<td>Gresser, John</td>
<td>O’Brien, Thomas</td>
</tr>
<tr>
<td>Gupta, Arjun</td>
<td>Rickey, V. Frederick</td>
</tr>
<tr>
<td>Hayden, John (Jack)</td>
<td>Rohatgi, Vijay</td>
</tr>
<tr>
<td>Hern, Thomas</td>
<td>Terwilliger, W. L.</td>
</tr>
<tr>
<td>Holland, Charles</td>
<td>Townsend, Ralph</td>
</tr>
<tr>
<td>Leetch, J. Frederick</td>
<td>Weber, Waldemar</td>
</tr>
</tbody>
</table>

Assistantship Funding

The department provides approximately 55 teaching assistantships ($12,500/Master’s - $16,500/PhD level, for the academic year) and tuition scholarships that cover instructional and non-resident fees. Funded students are provided with an office in the Mathematical Sciences Building. Additional summer support with stipend ($1,000—$2,000) and tuition scholarship is available to continuing funded students. A small number of additional summer scholarships are made possible by generous benefactors of the department.

All new funded graduate students are invited to participate in the Summer Fellowship Program which runs during six weeks from late June to early August. The Fellowship carries a stipend of $1,000 and includes tuition for 6 credit hours of coursework. The focus of the Program is a teaching seminar aimed at easing the transition to classroom teaching duties in the fall. Participants will also have the opportunity to take a class in mathematics or statistics for graduate credit. International students may take an English course especially designed for new graduate students.

All classes taught by the Department are small individual sections of 7-29 students—we offer no large lecture classes. Teaching assistants are assigned small individual classes in college algebra, calculus, precalculus (Math 1300 and below), or Statistics (Math 1150). This involves five to six contact hours per week with undergraduate students. Most classes are taught in the Mathematical Sciences Building.

Statistics students may seek a consultant’s position at the University’s Center for Business Analytics. These positions provide valuable experience for those preparing for careers in statistics. The stipends in the CBA are the same as for teaching assistants. Students may also seek an assistantship in the University’s Learning Commons.

Assistantship decisions are made by **March/April**. Incomplete applications are not reviewed for funding consideration.
General Information

Computing Facilities

Varied departmental and university computing facilities are available to graduate students. Access is available to the several systems at the Ohio Super Computer Center, for appropriate projects.

Each graduate student office has a desktop computer for word processing, e-mail, small scale computing, and connection to the campus network, including the library catalog and the internet. WiFi is available throughout the building. There is also a graduate student workroom, which is available at all times, that houses a laser printer, and Mac and Windows machines. Most classrooms are equipped with ceiling-mounted projectors.

University facilities include open labs with Macintosh and Windows computers. Major software available includes SAS, SPSS, Minitab, MATLAB, Maple, and Mathematica.

Location, Cultural and Recreational Activities

Bowling Green, a pleasant university town with a population of 30,000, is located about 20 miles south of Toledo, Ohio on Interstate 75.

The university sponsors a wide variety of cultural events including concerts (many of them free) in the Musical Arts Building, theatre performances, and guest speakers. Toledo has a symphony orchestra and one of the country’s finest art museums.

There are abundant recreational facilities at the University. The highlight is the Student Recreation Center which has two swimming pools (one Olympic-sized), basketball, squash, and racquetball courts, tennis courts, weight lifting and aerobic fitness rooms, a track, sauna, and many other facilities. The University also has a modern ice arena.

Contact:

For additional information on our degree programs, funding opportunities, faculty research strengths, course descriptions, recent employers of our graduates, graduate student directory and more, please visit our website at: http://www.bgsu.edu/departments/math or contact

Craig Zirbel, Ph.D.
Graduate Coordinator
e-mail: zirbel@bgsu.edu
419-372-7466

Anna Kelling
Graduate Secretary
e-mail: arlynch@bgsu.edu
419-372-2637
HOW TO APPLY FOR ADMISSION/ASSISTANTSHIP

To start in Summer 2019 or Fall 2019

The deadline for full consideration for admission and funding is January 31, 2019.

BGSU uses an all-electronic application system. Apply online at: gradapply.bgsu.edu/apply.

There, you will:

• upload electronic scans of transcripts from all colleges or universities attended (after admission, you will need to send BGSU official paper transcripts from each institution where you earned a degree)
• upload a statement of purpose
• list three faculty or professionals who can upload a letter of recommendation in support of your application; the application system will contact them by email
• list your GRE General Test results. Have your GRE General Test scores sent to BGSU using Institution Code: 1069
• international students, list your TOEFL or IELTS scores. Have TOEFL or IELTS scores sent to BGSU. Students from certain countries are exempt, see the bottom of the gradapply.bgsu.edu/apply page. Students with an undergraduate or master’s degree from a university in the United States do not need to provide TOEFL or IELTS score reports.
• pay a non-refundable application fee ($45 domestic, $75 international)
• indicate your interest in being considered for a teaching assistantship (Note: Assistantship decisions are made in March/April, and offers go out shortly after that.
• indicate the program you wish to pursue:
 o Master of Arts in Mathematics, choose Mathematics – MA
 o MA specialization in Statistics, choose Mathematics: Statistics – MA
 o Master of Science in Applied Statistics, choose Applied Statistics (Math) – MS
 o Master of Arts in Teaching, choose Mathematics – MAT
 o PhD in Mathematics, choose Mathematics – PhD
 o PhD in Statistics, choose Statistics - PhD
• For those wishing to pursue the Mathematics Masters in Arts of Teaching Degree (MAT), a photocopy of a current teaching license or certificate from the State of Ohio or other state will need to be included with your application.

If you are an international student and are admitted to BGSU, please follow the instructions on the International Student Services webpage in order to obtain your non-immigrant documents. Please do this promptly after admission to avoid any delays. See www.bgsu.edu/graduate/admissions for more information on the application process at BGSU.

To start in Spring 2019

Use the same application process as above. International students should apply by November 1, 2018, domestic students by December 1, 2018. Note that assistantship funding is not always available for spring starts, and it is always competitive. Also note that it is very difficult for PhD students to start in the Spring semester because the key courses are offered as fall-spring sequences, and one typically cannot start with the second course in the sequence.