

You were asked to explain 10 hypothesis tests above. For each of the tests (from the one sample z-test to the Shapiro-wilks test), go into further detail about the following aspects of the tests:

- 1. What is the distribution of the test statistic?
- 2. How are the critical values calculated from the distribution?
- 3. How are the p-values calculated?

Below is a detailed breakdown of the **distribution of the test statistic**, **calculation of critical values**, and **calculation of p-values** for each of the ten hypothesis tests:

1. One-Sample Z-Test

1. Distribution of the Test Statistic

• The test statistic follows the **standard normal distribution** (Z-distribution) under the null hypothesis:

$$Z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$

where σ is the known population standard deviation.

2. How Critical Values Are Calculated

- The critical values are found using the **standard normal distribution table (Z-table)**.
- For a significance level α , the critical values correspond to:
 - \circ Two-tailed test: $Z_{lpha/2}$ and $-Z_{lpha/2}$.
 - \circ One-tailed test: Z_{lpha} or $-Z_{lpha}$.

3. How P-Values Are Calculated

- The p-value is computed as:
 - \circ Two-tailed: $p=2P(Z>|Z_{
 m obs}|)$.
 - \circ One-tailed: $p = P(Z > Z_{
 m obs})$ or $p = P(Z < Z_{
 m obs})$.
- The p-value is obtained from the standard normal table.

2. Two-Sample Z-Test

1. Distribution of the Test Statistic

• The test statistic follows the **standard normal distribution**:

$$Z = rac{\left(ar{x}_1 - ar{x}_2
ight) - \left(\mu_1 - \mu_2
ight)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$$

2. How Critical Values Are Calculated

• The critical values are obtained from the **Z-table**, using the same procedure as the one-sample z-test.

3. How P-Values Are Calculated

• The p-value is computed similarly to the one-sample z-test, using the standard normal table.

3. One-Sample T-Test

1. Distribution of the Test Statistic

• The test statistic follows a **t-distribution with (n - 1) degrees of freedom (df)**:

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

2. How Critical Values Are Calculated

• The critical values are obtained from the **t-distribution table**, based on the desired significance level lpha and df=n-1.

3. How P-Values Are Calculated

• The p-value is calculated from the **t-distribution** using statistical tables or software.

4. Two-Sample T-Test

1. Distribution of the Test Statistic

• If equal variances are assumed (pooled t-test):

$$t=rac{\left(ar{x}_1-ar{x}_2
ight)-\left(\mu_1-\mu_2
ight)}{\sqrt{s_p^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}$$

- \circ Degrees of freedom: $df=n_1+n_2-2$.
- If unequal variances are assumed (Welch's t-test):

$$t=rac{(ar{x}_1-ar{x}_2)-(\mu_1-\mu_2)}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

• Degrees of freedom: Approximate using Welch's formula.

2. How Critical Values Are Calculated

ullet Use the **t-distribution table** with df for the given significance level.

3. How P-Values Are Calculated

• The p-value is obtained from the **t-distribution table** or statistical <u>software</u>.

5. Paired T-Test

1. Distribution of the Test Statistic

• The test statistic follows a **t-distribution with (n - 1) degrees of freedom**:

$$t=rac{ar{d}-\mu_d}{s_d/\sqrt{n}}$$

2. How Critical Values Are Calculated

• Use the **t-table** with df = n - 1.

3. How P-Values Are Calculated

• Computed from the **t-distribution table** or software.

6. F-Test for Variance Comparison

1. Distribution of the Test Statistic

• The test statistic follows an **F-distribution**:

$$F=rac{s_1^2}{s_2^2}$$

 $\circ~$ Degrees of freedom: $df_1=n_1-1$, $df_2=n_2-1$.

2. How Critical Values Are Calculated

• From the **F-distribution table**, using df_1 and df_2 .

3. How P-Values Are Calculated

• Computed using the **F-distribution table** or software.

7. ANOVA (F-Test)

1. Distribution of the Test Statistic

• The test statistic follows an **F-distribution**:

$$F = \frac{\text{MSB}}{\text{MSW}}$$

 $\circ \;\;$ Degrees of freedom: $df_1=k-1$, $df_2=n-k$.

2. How Critical Values Are Calculated

• From the **F-table** for the given df_1 and df_2 .

3. How P-Values Are Calculated

• Computed using the **F-distribution**.

8. Chi-Squared Test for Independence

1. Distribution of the Test Statistic

• The test statistic follows a chi-squared distribution:

$$\chi^2 = \sum rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

 $\circ \;\;$ Degrees of freedom: df=(r-1) imes (c-1).

2. How Critical Values Are Calculated

• From the chi-squared distribution table.

3. How P-Values Are Calculated

• Computed from the chi-squared distribution.

9. Shapiro-Wilk Test for Normality

1. Distribution of the Test Statistic

• The test statistic (W) follows a **Shapiro-Wilk distribution**, with values close to 1 indicating normality.

2. How Critical Values Are Calculated

• No direct critical value calculation; use tables or software.

3. How P-Values Are Calculated

• Computed using an **empirical distribution** based on sample size.

Summary Table

Test	Distribution	Critical Values	P-Value Calculation
One-Sample Z	Normal	Z-table	Z-table
Two-Sample Z	Normal	Z-table	Z-table

Test	Distribution	Critical Values	P-Value Calculation
One-Sample T	T-distribution ($df=n-1$)	T-table	T-table
Two-Sample T	T-distribution ($df=n_1+n_2-2$ or Welch)	T-table	T-table
Paired T	T-distribution ($df=n-1$)	T-table	T-table
F-Test	F-distribution	F-table	F-table
ANOVA	F-distribution	F-table	F-table
Chi-Squared	Chi-squared distribution	Chi-squared table	Chi-squared table
Shapiro-Wilk	Empirical	Not directly used	Empirical methods

Each test's critical value and p-value are derived based on its respective distribution.

This isn't very useful. You can remove the Shapiro-Wilks test from this next request.

- 1. Mathematically justify why we have each distribution for each test.
- 2. Mathematically explain what a critical value is and how they are calculated for each test.
- 3. Mathematically explain the calculation of a p-value for each test.

Additionally, explain what degrees of freedom and the significance level of a test are.

Preliminary Concepts

Before diving into each test, let's define **degrees of freedom** and **significance level** mathematically.

Degrees of Freedom (df)

Degrees of freedom (df) represent the number of independent values that can vary in a statistical calculation. It is generally given by:

df = Total number of observations - Number of estimated parameters

- In a **one-sample t-test**, df = n 1 because we estimate one parameter (the mean).
- ullet In a **two-sample t-test**, $df=n_1+n_2-2$ because we estimate two means.
- In an **F-test (ANOVA or variance tests)**, the degrees of freedom are split between groups and within groups.

Significance Level (α)

The significance level is the probability of rejecting the null hypothesis when it is true (Type I error). It determines the critical region in hypothesis testing.

Mathematically, if the test statistic T follows distribution D, then the critical region is:

$$P(T > T_{\alpha}) = \alpha$$

for a one-tailed test, or

$$P(|T| > T_{lpha/2}) = lpha$$

1. One-Sample Z-Test

Distribution Justification

The sample mean follows a normal distribution:

$$ar{x} \sim N\left(\mu, rac{\sigma^2}{n}
ight)$$

By standardizing:

$$Z = rac{ar{x} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$

since σ is known.

Critical Value Calculation

For a two-tailed test, the critical value $Z_{lpha/2}$ satisfies:

$$P(|Z|>Z_{lpha/2})=lpha$$

which we obtain from the standard normal table.

P-Value Calculation

For a two-tailed test:

$$p=2P(Z>|Z_{
m obs}|)$$

2. Two-Sample Z-Test

Distribution Justification

$$Z = rac{\left(ar{x}_1 - ar{x}_2
ight) - \left(\mu_1 - \mu_2
ight)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$$

Since $ar{x}_1 - ar{x}_2$ is normally distributed, Z follows a standard normal distribution.

Critical Value Calculation

Same as the one-sample Z-test.

P-Value Calculation

Same as the one-sample Z-test.

3. One-Sample T-Test

Distribution Justification

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

Since s^2 (sample variance) follows a **chi-squared distribution**:

$$rac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

it follows that:

$$t \sim t(n-1)$$

Critical Value Calculation

The critical value $t_{lpha/2,df}$ satisfies:

$$P(|T| > t_{lpha/2,df}) = lpha$$

P-Value Calculation

For a two-tailed test:

$$p = 2P(T > |T_{\rm obs}|)$$

4. Two-Sample T-Test

Distribution Justification

For equal variances:

$$t = rac{(ar{x}_1 - ar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}}$$

where the pooled variance is:

$$s_p^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2} \ t \sim t(n_1+n_2-2)$$

For unequal variances, Welch's approximation is used.

Critical Value Calculation

Same approach as the one-sample t-test, using $d\overline{f}=n_1+\overline{n_2}-2$.

P-Value Calculation

Same as the one-sample t-test.

5. Paired T-Test

Distribution Justification

Same as the one-sample t-test but applied to differences:

$$d_i = x_{1i} - x_{2i}, \quad ar{d} = rac{\sum d_i}{n}.$$

$$t=rac{ar{d}-\mu_d}{s_d/\sqrt{n}}\sim t(n-1)$$

Critical Value Calculation

Same as the one-sample t-test.

P-Value Calculation

Same as the one-sample t-test.

6. F-Test for Variance Comparison

Distribution Justification

$$F = rac{s_1^2}{s_2^2} \sim F(n_1 - 1, n_2 - 1)$$

where each variance follows a chi-squared distribution:

$$rac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

Critical Value Calculation

$$P(F > F_{\alpha,df_1,df_2}) = \alpha$$

from the F-table.

P-Value Calculation

$$p=P(F>F_{
m obs})$$

7. ANOVA (F-Test)

Distribution Justification

$$F = \frac{\text{MSB}}{\text{MSW}}$$

where:

$$ext{MSB} = rac{ ext{SSB}}{df_1}, \quad ext{MSW} = rac{ ext{SSW}}{df_2} \ F \sim F(k-1,n-k)$$

Critical Value Calculation

From the F-table:

$$P(F > F_{\alpha,df_1,df_2}) = \alpha$$

P-Value Calculation

$$p = P(F > F_{
m obs})$$

8. Chi-Squared Test for Independence

Distribution Justification

$$\chi^2 = \sum rac{(O_{ij}-E_{ij})^2}{E_{ij}}$$

where each term follows a chi-squared distribution, so:

$$\chi^2 \sim \chi^2(df)$$

with:

$$df = (r-1)(c-1)$$

Critical Value Calculation

From the chi-squared table:

$$P(\chi^2 > \chi^2_{lpha,df}) = lpha$$

P-Value Calculation

$$p=P(\chi^2>\chi^2_{
m obs})$$

Summary

Test	Distribution	Critical Values	P-Value
One-Sample Z	Normal ($N(0,1)$)	$Z_{lpha/2}$	(2P(Z >
Two-Sample Z	Normal ($N(0,1)$)	$Z_{lpha/2}$	(2P(Z >

Test	Distribution	Critical Values	P-Value
One-Sample T	t(n-1)	$t_{lpha/2,df}$	(2P(T >
Two-Sample T	$t(n_1+n_2-2)$	$t_{lpha/2,df}$	(2P(T >
Paired T	t(n-1)	$t_{lpha/2,df}$	(2P(T >
F-Test	$F(df_1,df_2)$	F_{lpha,df_1,df_2}	$P(F>F_{ m obs})$
ANOVA	F(k-1,n-k)	F_{lpha,df_1,df_2}	$P(F>F_{ m obs})$
Chi-Squared	$\chi^2(df)$	$\chi^2_{lpha,df}$	$P(\chi^2>\chi^2_{ m obs})$

Justify the distribution of each test statistics as much as you can.

Justification of the Distribution of Each Test Statistic

Below, I provide a detailed justification for why each test statistic follows its respective probability distribution.

1. One-Sample Z-Test

Test Statistic:

$$Z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$

Justification for Normality:

1. The sample mean \bar{x} follows:

$$ar{x} \sim N\left(\mu, rac{\sigma^2}{n}
ight)$$

if the population is normally distributed, or approximately normal by the **Central Limit Theorem** (CLT) for large n.

2. Standardizing \bar{x} using the known population standard deviation σ :

$$Z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$

results in a standard normal distribution:

$$Z \sim N(0,1)$$

2. Two-Sample Z-Test

Test Statistic:

$$Z = rac{\left(ar{x}_1 - ar{x}_2
ight) - \left(\mu_1 - \mu_2
ight)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$$

Justification for Normality:

1. Each sample mean follows:

$$ar{x}_1 \sim N\left(\mu_1, rac{\sigma_1^2}{n_1}
ight), \quad ar{x}_2 \sim N\left(\mu_2, rac{\sigma_2^2}{n_2}
ight)$$

(Normality holds by CLT if n_1, n_2 are large).

2. The difference of two independent normal distributions is also normal:

$$(ar{x}_1 - ar{x}_2) \sim N\left(\mu_1 - \mu_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight)$$

3. Standardizing gives:

$$Z \sim N(0,1)$$

3. One-Sample T-Test

Test Statistic:

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

Justification for the t-Distribution:

1. If the population is normal:

$$ar{x} \sim N\left(\mu, rac{\sigma^2}{n}
ight)$$

2. The sample variance follows a chi-squared distribution:

$$rac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

because it is the sum of squared normal variables.

3. The ratio:

$$rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

follows a **t-distribution** with n-1 degrees of freedom:

$$t \sim t(n-1)$$

4. Two-Sample T-Test

Test Statistic:

$$t = rac{(ar{x}_1 - ar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}}$$

Justification for the t-Distribution:

1. The variance estimator:

$$s_p^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}$$

is an unbiased estimator of the population variance.

2. The difference in sample means follows:

$$\left(ar{x}_1 - ar{x}_2
ight) \sim N\left(\mu_1 - \mu_2, rac{\sigma^2}{n_1} + rac{\sigma^2}{n_2}
ight)$$

but replacing σ^2 with s_p^2 introduces variability, leading to a **t-distribution** with n_1+n_2-2 degrees of freedom.

For Welch's t-test (unequal variances), the degrees of freedom are approximated using:

$$df = rac{\left(rac{s_1^2}{n_1} + rac{s_2^2}{n_2}
ight)^2}{rac{\left(rac{s_1^2}{n_1}
ight)^2}{n_1 - 1} + rac{\left(rac{s_2^2}{n_2}
ight)^2}{n_2 - 1}}$$

5. Paired T-Test

Test Statistic:

$$t=rac{ar{d}-\mu_d}{s_d/\sqrt{n}}$$

Justification for the t-Distribution:

- ullet The paired t-test reduces to a one-sample t-test on the differences $d_i=x_{1i}-x_{2i}.$
- If the differences are normal, then:

$$ar{d} \sim N\left(\mu_d, rac{\sigma_d^2}{n}
ight)$$

• The sample standard deviation of differences:

$$s_d^2=rac{1}{n-1}\sum (d_i-ar{d})^2.$$

follows a chi-squared distribution.

• This leads to:

6. F-Test for Variance Comparison

Test Statistic:

$$F=rac{s_1^2}{s_2^2}$$

Justification for the F-Distribution:

• Each sample variance follows:

$$rac{(n_1-1)s_1^2}{\sigma^2} \sim \chi^2(n_1-1), \quad rac{(n_2-1)s_2^2}{\sigma^2} \sim \chi^2(n_2-1)$$

• The ratio of two chi-squared distributions divided by their degrees of freedom follows an **F**-distribution:

$$F \sim F(n_1-1,n_2-1)$$

7. ANOVA (F-Test)

Test Statistic:

$$F = rac{ ext{MSB}}{ ext{MSW}}$$

Justification for the F-Distribution:

• The mean square between groups (MSB) and mean square within groups (MSW) are independent chi-squared distributed variables divided by their respective degrees of freedom:

$$rac{ ext{SSB}/(k-1)}{\sigma^2} \sim \chi^2(k-1), \quad rac{ ext{SSW}/(n-k)}{\sigma^2} \sim \chi^2(n-k)$$

• Their ratio follows:

$$F = rac{ ext{MSB}}{ ext{MSW}} \sim F(k-1,n-k)$$

8. Chi-Squared Test for Independence

Test Statistic:

$$\chi^2 = \sum rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Justification for the Chi-Squared Distribution:

- The observed and expected counts follow a multinomial distribution.
- By Pearson's approximation, when sample sizes are large, the test statistic follows:

$$\chi^2 \sim \chi^2((r-1)(c-1))$$

where degrees of freedom are based on the number of independent constraints in the contingency table.

These justifications derive from fundamental probability theory, particularly properties of the **normal**, **chi-squared**, **and F-distributions**.