CS 7300 : UNSUPERVISED FEATURE LEARNING

Semester Hours: 3.0
Coordinator: TBD
Text: Vary
Author(s): N/A
Year: N/A

Contact Hours: 3

SPECIFIC COURSE INFORMATION

Catalog Description:
The course covers the principles and advances in unsupervised feature learning algorithms. It focuses on development of machine learning features, considering the feature hierarchies from unlabeled data. The learning algorithms are exploited in many applications. Topics include clustering, sparse coding, Boltzmann machine, autoencoders, and deep belief networks. The course also requires an open-ended research project. Prerequisites: CS 5200 and STAT 5020, or permission of instructor.

SPECIFIC COURSE GOALS

- I am able to explain the principles of the unsupervised feature learning algorithms.
- I am able to implement popular clustering algorithms.
- I am able to design unsupervised learning networks from unlabeled data.
- I am able to employ unsupervised learning networks for real applications.

LIST OF TOPICS COVERED

- Introduction (~5%)
 - Overview
 - Basic mathematics review: probability, loss function, likelihood, regressions
- Supervised Learning & Algorithms (~15%)
 - Classification: linear models
 - Kernel method: support vector machines
 - Neural networks: back-propagation
 - Graphical modes: Bayesian networks*
- Dimensionality Reduction (~10%)
• Isomap
• Locally Linear Embedding (LLE)

• Clustering (~15%)
 • Hierarchical clustering
 • K-means, Bradley-Fayyad-Reina (BFR) algorithm
 • Expectation-maximization algorithm
 • Density-based spatial clustering of applications with noise
 • Grid-based subspace clustering: CLIQUE*
 • Internal evaluation, external evaluation*

• Principle Component Analysis (PCA) (~15%)
 • Maximum variance formulation, minimum-error formulation
 • Probabilistic PCA
 • Kernel PCA
 • Nonlinear latent variable models*

• Independent Component Analysis (ICA) (~15%)
 • Models: linear noiseless ICA, linear noisy ICA, nonlinear ICA
 • Binary ICA

• Sparse Coding (~10%)
 • Over-complete set of basis vector
 • Efficiency

• Deep Network & Learning (~15%)
 • Neural network
 • Deep belief networks, deep architecture
 • Convolutional deep belief networks
 • Boltzmann Machine
 • Energy-based model
 • Restricted Boltzmann machine*
 • Autoencoders

(*) Optional if time allows.)

RECOMMENDED REFERENCES