CS 6630: SPATIAL AND MULTIDIMENSIONAL DATABASES

<table>
<thead>
<tr>
<th>Semester Hours:</th>
<th>3.0</th>
<th>Contact Hours: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Ray Kresman</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>Spatial databases- a tour</td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>Shekhar and Chawla</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2003</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFIC COURSE INFORMATION

Catalog Description:

Introduction to advanced database structures and large datasets. Efficient data structures and related algorithms for spatial, streaming and multi-dimensional and semi-structured datasets. Employs concepts from databases, algorithms, computer graphics and computational geometry. Prerequisites: CS 5620 or permission of instructor.

Course type: ELECTIVE

SPECIFIC COURSE GOALS

- I am able to store, retrieve and manipulate multidimensional data using advanced data structures such as MX-quad tree, BBD-tree, R-tree, and others.
- I am able to formulate spatial queries that permit efficient data.
- I am able to distinguish between various spatial distance metrics.
- I am able to explain the mechanics of certain algorithms for similarity searching.
- I am able to use advanced SQL operations to query data warehouses.
- I am able to explain the nature of streaming data and algorithms for certain problems.
- I am able to critically evaluate a research literature in the realm of multidimensional, spatial or streaming data.

LIST OF TOPICS COVERED

1. Introduction
 - Large datasets
 - Spatial data & GIS
Streaming data

2. Graph Theory
 - Elementary graphs
 - Computational geometry

3. Multidimensional Datasets
 - Transactional data and relational schemas
 - Dimensional models
 - Snowflake schemas
 - Data warehousing & SQL

4. Spatial Datasets
 - Representation
 - Access methods
 - Trees: R-tree, Kd-tree, quad-tree, etc.
 - Performance tradeoffs

5. Data Storage and Manipulation
 - Spatial Object types
 - Spatial queries & operations
 - Similarity search/methods
 - Spatial algebra

6. Streaming Data
 - Sample problem: sampling, cardinality/moments estimation
 - Clustering & space filling cures
 - Approximation algorithms

7. Performance
 - Spatial indices
 - Clustering & space filling curves
 - Data quality and metrics

8. Mining
 - Association rules
 - Continuous space and spatial co-location
 - Spatial autocorrelation