CS 6260 : VISUALIZATION

Semester Hours: 3.0
Contact Hours: 3
Coordinator: Jong Kwan “Jake” Lee
Text: Visualization Analysis and Design
Author(s): T. Munzner
Year: 2014

SPECIFIC COURSE INFORMATION

Catalog Description:
The course discusses the principles, methods, and techniques for effective visual analysis of data. Many aspects of visualization, including techniques for both spatial and non-spatial data, are explored. The course topics include an overview of principles from perception and design, a framework for discussing, critiquing, and analyzing visualization, and visualization techniques and methods for a broad range of data types. Hands-on visualization experience using visualization systems and tools are included. Analytic tasks are also performed on the visualization literature. Prerequisites: Admission to MS in CS program, admission to MS/PhD in DS program, or permission of instructor.

SPECIFIC COURSE GOALS

- I am able to explain the basic principles in visualization design.
- I am able to use visualization methods for both spatial and non-spatial data.
- I am able to analyze the visualization design choices for different problems.
- I am able to apply data item and attribute reductions for visualization.
- I am able to utilize popularly-used visualization systems and tools.

LIST OF TOPICS COVERED

- Introduction to Visualization (~5%)
 - Overview and value of visualization
 - The big picture
- Data Abstraction and Task Abstraction (~10%)
 - Data types, attribute types, semantics
 - Analyzing tasks abstractly, actions (analyze, produce, search, query)
• Analysis and Mark & Channels (~10%)
 o Levels of design, validations
 o Expressiveness and effectiveness, effectiveness
• Rules of Thumb in Visualization (~15%)
 o Justifying 3D, 2D
 o Memory and attention, animation and side-by-side views
 o Resolution, responsiveness
• Tables, Networks and Trees (~10%)
 o Keys and values, categorical regions
 o Spatial axis orientation, spatial layout density
 o Matrix, link marks, hierarchy marks
• Spatial Data (~10%)
 o Geographic data, scalar fields, vector fields, tensor fields
• Map Color and Other Channels (~5%)
 o Color theory, colormaps, channels
• Views (~10%)
 o Manipulating views (selecting elements, changing viewpoint, reducing attributes)
 o Juxtapos and coordinate views
 o Partition, layers
• Reduce Items and Attributes (~10%)
 o Filtering, aggregate
• Visualization Tools/Libraries (~15%)
 o E.g., Tableau, D3, Qt, Python, Processing (sketchbook SW), Volume rendering library, controP5 library, etc.

EXAMPLE PROJECTS
• Data Exploration and Analysis via Visualization Tool
 o Use a visualization tool to help users visually explore complex data and confirm hypothesis about the data.
 o Formulate and answer a series of specific questions about a specific data, and then, create a final visualization that is designed to communicate the findings about the data
• Exploring Time Series Data
 o Time series data are used very often these days, e.g., in medicine, finance, history, climatology, etc.
 o Implement/develop an interactive viewer for looking at time series that explores several different visual representations.

• Exploring Multidimensional Data
 o Multidimensional data exploration is a challenging task in visualization.
 o Implement the Parallel Coordinates (widely used visual representation) with the support of the following interactivities: filtering the data across multiple attributes, reordering the axes, inverting the axes
 o Aggregate multidimensional data into clusters of similar data points

• Transfer Function Design
 o Implement a volume renderer for 3D volume dataset
 o Design transfer functions for specific volume dataset with your own control panel widget

RECOMMENDED REFERENCES

• Information Visualization: Perception for Design, 3rd ed., by Colin Ware, Morgan Kaufmann
• Visual Thinking for Design, 1st ed., by Colin Ware, Morgan Kaufmann
• Visualizing Data: Exploring and Explaining Data with the Processing Environment, 1st ed., by Ben Fry, O’Reilly Media