CS 4390: NETWORK ARCHITECTURE AND APPLICATIONS

Semester Hours: 3.0
Coordinator: Sankardas Roy
Text: Computer Networking: A Top-Down Approach
Author(s): KUROS AND ROSS
Year: 2017, 7th edition

SPECIFIC COURSE INFORMATION

Catalog Description:

Layered architectures and protocols. TCP/IP protocol suite. Client-server communication paradigm. Application architectures such as push and pull technologies, web services, cloud and microservices, multimedia. Scalability and performance. Prerequisite: Grade of C or better in CS 3080.

Course type: REQUIRED

SPECIFIC COURSE GOALS

- 1. Justify the need for, and describe the working of, layered protocol suites, such as TCP/IP.
- 2. Develop client-server applications using TCP/IP
- 3. Assemble/disassemble packets and translate address as it traverses networks
- 5. Motivate the need for and summarize the details of service architectures, such as web services and micro-services
- 6. Describe the details, including payload types and synchronization of multimedia application protocols
- 7. Explain and distinguish the various service types supported by internet applications – for example, best effort, streaming
- 8. Construct the working of certain types of congestion control mechanisms.

STUDENT OUTCOMES ADDRESSED BY THIS COURSE
• B.1 Analyze a given problem, and identify and define the computing requirements appropriate to its solution.
• B.3 Apply mathematical foundations, algorithmic principles, and computer science theory as appropriate in modeling and solving real-world problems.
• B.8. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.

LIST OF TOPICS COVERED

 o Layered Protocol Architectures (~ 5%)
 ▪ TCP/IP and OSI
 o TCP/IP (~ 10%)
 ▪ LAN and other components
 ▪ Service view
 ▪ TCP vs UDP, and more
 ▪ Packet formats
 o Client-server Applications (~ 15%)
 ▪ Thread vs Process
 ▪ Sockets, RPC, etc
 ▪ Scalability
 o Transport and Routing (~ 15%)
 ▪ Reliable vs. unreliable transfer
 ▪ Congestion control
 ▪ Routing protocols
 o Service Architectures (~ 15%)
 ▪ Web services
 ▪ Microservices
 ▪ P2P and others
 o Multimedia (~ 10%)
 ▪ Real-time/streaming, VoIP
 ▪ Quality of Service
 o Wireless Communication (~ 10%)
- Wi-Fi
- Cell networks
 - Media and Performance (~ 10%)
 - Signal strength
 - Compression and error detection
 - Delay, loss, throughput
 - Emerging/Future Trends (~ 10%)
 - Parallel and distributed computing
 - Security
 - Others