CS 4200: ARTIFICIAL INTELLIGENCE METHODS

Semester Hours: 3.0
Contact Hours: 3
Coordinator: Qing Tian
Text: Artificial Intelligence: A Modern Approach
Author(s): RUSSELL AND NORVIG
Year: 2010

SPECIFIC COURSE INFORMATION

Catalog Description:
Intermediate AI programming with application to representative problems requiring searching, reasoning, planning, matching, deciding, parsing, seeing and learning. Prerequisite: CS 3350.

Course type: ELECTIVE

SPECIFIC COURSE GOALS

- I can explain the major challenges facing AI, both from a theoretical (research) and a practical (application) standpoint.
- I understand the properties of AI task environments well enough to give a correct PEAS (Performance, Environment, Actuators, Sensors) description of a specific task environment.
- For simple AI problems, I can formulate a correct abstract model consisting of states, actions, transitions, goals and costs.
- I can explain and implement basic AI search algorithms, including blind searches (depth-first, breadth-first) and informed searches (best-first and A*).
- I can describe and compare Hill-climbing search, simulated annealing, local beam, search and genetic algorithms.
- I can explain and implement, in script or pseudocode, the minimax algorithm and the alpha-beta pruning algorithm.
- I can describe and explain some agent-based AL architecture (e.g., game-playing agents).
• I can explain how propositional theorem-proving works.
• I understand the concepts of first-order predicate logic (FOPL) well enough to explain how forward- and backward-chaining algorithms work.

LIST OF TOPICS COVERED

• Introduction to AI
• Problem Solving and Search
 o State Space
 o Blind Search, Heuristic Search (including A*), Adversary Search
• Knowledge Representation Tools
 o Logic
 o Semantic Nets, Frames
 o Probability
 o Fuzzy Logic
 o One or more of the following optional topics: transition nets (including ATNs), inductive logic, non-monotonic logic, neural nets
• Integrated AI Systems
 o Planning Systems
 o Rule-based Expert Systems
 o Constraint Propagation Systems
 o Truth Maintenance Systems
 o Learning Systems
 o One or more of the following optional topics: robotic systems, vision systems, natural language systems, neural network systems, connectionist systems, theorem-proving systems.
• Evaluation and Overview
 o Ethical Issues in AI
 o What Computers Can Do
 o What Computers Still Can't Do