CS 3350 : DATA STRUCTURES

Semester Hours: 3.0
Contact Hours: 3
Coordinator: Venu Dasigi
Text: Data Abstraction and Problem Solving With C++, 6/E
Author(s): FRANK CARRANO & TIMOTHY HENRY
Year: 2013

SPECIFIC COURSE INFORMATION

Catalog Description:
Abstract data types including stacks, queues, lists, trees and graphs. Introduction to analysis of algorithms. Recursive searching and sorting algorithms. Adaptation and use of generic data structures and types. Functional concepts. Prerequisite: MATH 2220 or MATH 3220 and Grade of C or better in CS 2020.

Course type: REQUIRED

SPECIFIC COURSE GOALS

- I can solve computational problems using recursion.
- I can implement and apply stacks, queues, trees, and other custom data structures.
- I can create generic functions and classes.
- I understand algorithmic complexity (e.g. Big “O” notation).
- I can understand the relationship between data structures and algorithms.
- I can understand the design tradeoffs (e.g., code complexity and performance) in data structures and algorithms.

COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions
• CS 2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline
• CS 3 Communicate effectively in a variety of professional contexts
• CS 6 Apply computer science theory and software development fundamentals to produce computing-based solutions

SOFTWARE ENGINEERING STUDENT OUTCOMES ADDRESSED BY THIS COURSE

• SE 1 An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
• SE 3 An ability to communicate effectively with a range of audiences

LIST OF TOPICS COVERED

• C++ review (arrays, classes)
• Recursive functions
• Advanced C++ topics (pointers, copy constructors, overloading functions, abstract classes, base classes, derived classes and friends)
• Exception handling
• Templates (function and class templates)
• Adaptation and use of Standard Template Library data structures (iterators, vectors, strings, dequeues, heap trees, hash tables)
• Use of Standard Template Library Algorithms (sorting, shuffling, permuting)
• Sorting algorithms
• Big-O notation
Faculty who recently offered CS 3350 have discussed and identified a list of topics related to computer security in this course. Below is a list for instructors to incorporate. (*) indicates topics that are mandatory.

<table>
<thead>
<tr>
<th>Security Topic</th>
<th>Description</th>
<th>Textbook Reference¹</th>
<th>Estimated Class Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Initialization before use</td>
<td>Review how C++ default initialization occurs – what is/isn’t initialized prior to use, why is that important?</td>
<td>Interlude 2</td>
<td>1</td>
</tr>
<tr>
<td>*Principle of least privilege</td>
<td>Making class data members private and allowing only certain ‘holes in the wall’ to access what the user needs and nothing more. Controlling what sub-types can access via private vs. protected in inherited classes.</td>
<td>Chapter 1 Interlude 1 Interlude 2</td>
<td>2</td>
</tr>
<tr>
<td>*Hash functions</td>
<td>Discussion of what a hash function is, several simple examples. The use of hash functions to implement a dictionary.</td>
<td>Chapter 18</td>
<td><1</td>
</tr>
</tbody>
</table>

¹Data Abstraction and Problem Solving With C++ by Carrano & Henry, 7th Edition.