CS 3350 : STANDARD DATA STRUCTURES AND ALGORITHMS

<table>
<thead>
<tr>
<th>Semester Hours:</th>
<th>3.0</th>
<th>Contact Hours: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator:</td>
<td>Winnie Rex</td>
<td></td>
</tr>
<tr>
<td>Text:</td>
<td>Data Abstraction and Problem Solving With C++, 6/E</td>
<td></td>
</tr>
<tr>
<td>Author(s):</td>
<td>FRANK CARRANO & TIMOTHY HENRY</td>
<td></td>
</tr>
<tr>
<td>Year:</td>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFIC COURSE INFORMATION

Catalog Description:
Advanced programming concepts. Adaptation and use of standard class libraries and generic algorithms. Prerequisite: Math 2220 or MATH 3220 and grade of C or better in CS 2020.

Course type: **REQUIRED**

SPECIFIC COURSE GOALS

- I can solve computational problems using recursion
- I can implement and apply stacks, queues, trees, and other custom data structures
- I can create generic functions and classes
- I understand algorithmic complexity (e.g. Big “O” notation)
- I can understand the relationship between data structures and algorithms
- I can understand the design tradeoffs (e.g., code complexity and performance) in data structures and algorithms

STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- B.1 Analyze a given problem, and identify and define the computing requirements appropriate to its solution
- B.2 Use current techniques, skills, and tools in computing practice
- B.3 Apply mathematical foundations, algorithmic principles, and computer science theory as appropriate in modeling and solving real-world problems
• B.6 Communicate effectively with a range of audiences using oral, written, and electronic mediums

LIST OF TOPICS COVERED

• C++ review (arrays, classes)
• Recursive functions
• Advanced C++ topics (pointers, copy constructors, overloading functions, abstract classes, base classes, derived classes and friends)
• Exception handling
• Templates (function and class templates)
• Adaptation and use of Standard Template Library data structures (iterators, vectors, strings, dequeues, heap trees, hash tables)
• Use of Standard Template Library Algorithms (sorting, shuffling, permuting)
• Sorting algorithms
• Big-O notation