CS 3080 : OPERATING SYSTEMS

Semester Hours: 3.0
Contact Hours: 3

Coordinator: Robert Dyer

Text: Operating System Concepts

Author(s): SILBERSHATZ GALVIN, GAGNE

Year: 2008

SPECIFIC COURSE INFORMATION

Catalog Description:

Features of modern multiprocessing operating systems. Threads and processes; resource management; scheduling, concurrency, and communication; virtual memory management; secondary storage management. Students cannot get credit for both CS 3080 and CS 3270. Prerequisite: Grade of C or better in CS 2020 and CS 2170 or CS 2190.

Course type: REQUIRED

SPECIFIC COURSE GOALS

- I can describe process scheduling algorithms, and compare their performance.
- I can use language primitives to manage threads and processes.
- I can describe concurrency issues and compare approaches to solving them.
- I can implement pseudo-code & actual code to solve certain synchronization problems.
- I can describe real and virtual memory management algorithms.
- I can derive the mapping between virtual and real addresses.
- I can describe certain scheduling algorithms for device management.

COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions
• CS 2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline
• CS 6 Apply computer science theory and software development fundamentals to produce computing-based solutions

LIST OF TOPICS COVERED

• Overview (~ 10%)
 o OS history and features
 o Process, user and kernel threads
 o Security
• Scheduling (~ 20%)
 o Process and thread management
 o Scheduling algorithms
 o Performance tradeoffs
 o Examples
• Concurrency (~ 20%)
 o Race condition
 o Mutual exclusion algorithms for processes and threads
 o Deadlock
 o Examples
• Communication (~ 15%)
 o Shared memory
 o Pipes and other paradigms
 o Examples
• Memory Management (~ 15%)
 o Real and virtual memory
 o Address Translation
 o Paging algorithms
 o Performance and examples
• Device Management (~ 10%)
 o Device interaction
• Buffer management
• Disk schedulers
• Platform Specifics (~ 10%)
 • Windows
 • Unix

COMPUTER SECURITY TOPICS

Faculty who recently offered CS 3080 have discussed and identified a list of topics related to computer security in this course. Below is a list for instructors to incorporate. (*) indicates topics that are mandatory.

<table>
<thead>
<tr>
<th>Security Topic</th>
<th>Description</th>
<th>Textbook Reference1</th>
<th>Estimated Class Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>Virtual Machines. Benefits of a virtual machine. Include discussion of how virtual machines provide a level of isolation from the guest to the host OS.</td>
<td>Chapter 16</td>
<td>1</td>
</tr>
<tr>
<td>*Isolation</td>
<td>Virtual Memory. Discussing how virtual memory works, including how kernel processes are allocated separately and isolated, from user processes.</td>
<td>Chapter 9</td>
<td>1</td>
</tr>
<tr>
<td>*Protection</td>
<td>User vs. kernel mode; SVC-protect CPU, I/O and computer memory; ring structure. Notions of protection domains and access matrices are applied in OS to control access to resources. Specifically cover notion of principle of least privilege.</td>
<td>Chapter 2, Chapter 14</td>
<td>5</td>
</tr>
<tr>
<td>*Security</td>
<td>Discussion of security threats and attacks. Basics of encryption, authentication, and hashing techniques. Topics including port scanning, denial of service, and worms. Authentication of users (passwords, biometrics, etc.).</td>
<td>Chapter 15</td>
<td>2</td>
</tr>
<tr>
<td>*Concurrency</td>
<td>Threading, threading issues such as thread safety. Synchronization techniques.</td>
<td>Chapter 4, Chapter 5</td>
<td>3-6</td>
</tr>
</tbody>
</table>

1Silberschatz, 8th Edition.