CS 2010: PROGRAMMING FUNDAMENTALS

<table>
<thead>
<tr>
<th>Semester Hours:</th>
<th>3.0</th>
<th>Contact Hours:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator:</td>
<td>Jadwiga A. Carlson</td>
<td>Text:</td>
<td>Programming in C++ with zyBooks & zyLabs</td>
</tr>
<tr>
<td>Author:</td>
<td>VAHID & LYSECKY</td>
<td>Year:</td>
<td>2020</td>
</tr>
</tbody>
</table>

SPECIFIC COURSE INFORMATION

Catalog Description:

Problem solving and algorithm development. Basic programming concepts including elementary data types, arrays, strings, files, control structures, and functions. Searching and sorting algorithms. Testing and debugging strategies. Prerequisite: Math placement score of 32 or MATH 1200 or MATH 99 or higher. Approved for distance education.

Course type:

REQUIRED

SPECIFIC COURSE GOALS

- I can explain the fundamental concepts of procedural programming.
- I can use a high-level language to write programs to solve problems.
- I can analyze problem requirements in order to understand what type of data and processes are involved in the system.
- I can design a solution using a modular approach and organize program code to implement the design.
- I can debug programs and verify that the output of a program satisfies the problem requirements.
- I can implement algorithms to search and sort an array.
- I can implement simple recursive functions.
COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions
- CS 2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline
- CS 5 Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline
- CS 6 Apply computer science theory and software development fundamentals to produce computing-based solutions

SOFTWARE ENGINEERING STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- SE 5 An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- SE 7 An ability to acquire and apply new knowledge, as needed, using appropriate learning strategies

LIST OF TOPICS COVERED

- Introduction and Basic Concepts (1 week = 7%)
 - Computers, programs, C++ (compiler, linker, syntax/logic/run-time errors)
 - Problem solving and use of abstraction
 - Developing algorithms (flowcharting, pseudocode)
- Basic concepts (2 weeks = 14%)
 - Primitive data types (int, char, string, double, and bool)
 - Assignment statement
 - Evaluating expressions (order of precedence)
 - Coercion, type casting (type of polymorphism)
 - Testing/debugging (step over/into/out, conditional breakpoints)
 - Documentation standards (self-documenting naming conventions)
• Decision/Control structure (1.5 weeks = 11%)
 o Relational and logical operators
 o Conditional clauses (if, if/else, if/else if, switch)
• Loops (2 weeks = 14%)
 o Loop structures (while, do while, for)
 o Sentinel value with while & do while
 o Processing a list of numbers (compute average, find largest/smallest, running total)
 o Input Validation
• Introduction to text file I/O (1 week = 7%)
 o Opening, processing, closing of a file, eof()
 o Additional data types (ifstream, ofstream, fstream)
• Functions (2 weeks = 14%)
 o Function definition, prototype, call
 o Parameter passing (by value, by reference)
 o Function overloading (another type of polymorphism)
• Recursion (direct/linear, 1 week = 7%)
 o Students trace recursive functions
• Arrays (2 weeks = 14%)
 o 1D and 2D arrays
 o Arrays as parameters
• Sorting and Searching Arrays (1.5 weeks = 11%)
 o Bubble sort
 o Linear and binary search

COMPUTER SECURITY TOPICS

Faculty who recently offered CS 2010 have discussed and identified a list of topics related to computer security in this course. Below is a list for instructors to incorporate. (*) indicates topics that are mandatory.
<table>
<thead>
<tr>
<th>Security Topic</th>
<th>Description</th>
<th>Textbook Reference</th>
<th>Estimated Class Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Read Only</td>
<td>Constant values (const) cannot be changed during execution.</td>
<td>Chapter 2.10</td>
<td><1</td>
</tr>
<tr>
<td>*Validation</td>
<td>Validating/inspecting input data to determine whether it is acceptable. Bad output will be produced from bad input.</td>
<td>Chapter 2.1, 3.7, 5.2</td>
<td>1</td>
</tr>
<tr>
<td>*Integer overflow</td>
<td>Integer overflow occurs when assigning a value that is too large (overflow) or too small (underflow) to be held in a variable. Variable contains value that is ‘wrapped around’ set of possible values to negative.</td>
<td>Chapter 2.17</td>
<td><1</td>
</tr>
<tr>
<td>*Initialization</td>
<td>C++ local variables are not initialized by default, initialize before use. Static local and global variables are initialized by default.</td>
<td>Chapter 2.2, 7.11</td>
<td>1</td>
</tr>
</tbody>
</table>

Programming in C++ with zyBooks & zyLabs