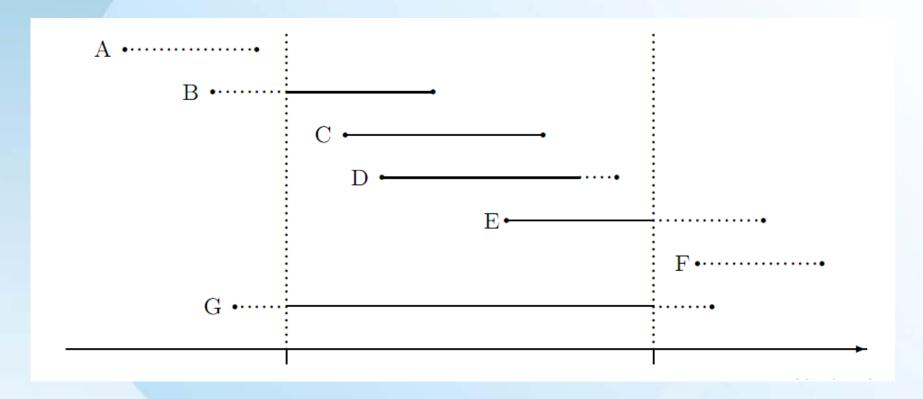
Survival Analysis

Hsueh-Sheng Wu
CFDR Workshop Series
Spring 2012

Outline

- What is survival analysis
- Survival analysis steps
- Create data for survival analysis
 - Data for different analyses
 - The dependent variable in Life Table analysis and Cox Regression
 - Reshape data for Discrete-time analysis
- Analyze data
 - Life Table
 - Cox Regression without time-varying variables
 - Discrete-time without time-varying variables
 - Discrete-time with time-varying variables
- conclusion


What is survival analysis

- Survival analysis is a "time to event" analysis, that is, we follow subjects over time and observe at which point in time they experience the event of interest
- Survival analysis establishes the causal relation between independent variables and the dependent variable
- Survival analysis can use incomplete information from respondents

What is survival analysis(continued)

Figure 1. Different types of censoring

Start of the study

End of the study


What is survival analysis(continued)

- A is fully censored on the left
- B is partially censored on the left
- C is complete
- D is censored on the right within the study period
- E is censored on the right
- F is completely censored on the right
- G represents a duration that is left and right censored

STEPS for Survival Analysis

- What is the research question
- Locate and select variables
- Establish analytic sample
- Recode variables
- Create timing data for survival analysis
 - Life Tables and Cox Regression
 - Discrete-time analysis
- Analyze data
 - Life Table
 - Cox regression
 - Discrete-time analysis

An example of conducting survival analysis

- Research Question:
 What factors are associated with the timing of first marriage?
- Variables:
 - Dependent variable: Timing of first marriage
- Predictors:
 - Gender (male/female),
 - Race (black/non-black)
 - Age (continuous)
 - Expectation of marriage at Wave I (continuous)
 - High school graduation (yes/no)
- Weight variables:
 - Region: (West, Midwest, South, and Northeast)
 - Schools (Range 1 to 371)

Demographic Research

- Individual weights (Range 16.3183 to 6649.3618)
- An indicator of whether adolescents are included in the analytic sample
 sub_pop (yes/no)
 Family and

Analytic Sample

- The Sample Size:
 - 20, 745 adolescents participated in Wave 1 interview
 - 15, 170 adolescents provided information on marriages at Wave III interview
 - 14,253 adolescents has valid information on the timing of first marriage and weight variables at Wave I
 - 2,855 have married for the first time before Wave III interview
- Respondents who had first marriage before Wave III interview but were excluded from the analytic sample
 - 54 married before Wave I interview
 - 2 married before Age 14
 - 34 had first marriage, but did not have graduation time
- The analytic sample
 - Adolescents with valid responses to marital status, all the predictor variables, and weight variables. The final N = 13, 995.

Create data for survival analysis

Data for different analysis

Table 1. Data for analyses not involving timing of first marriage

Name	Married	Female	High School Graduation
Tim	0	0	1
Sara	1	1	0
Tom	0	0	0
Sherry	1	1	_1

Note:

Married: 1 = Married; 0 = Unmarried

Female: 1 = Female; 0 = Male

High School Graduation: 1 = Graduated from High School; 0 = Did not graduate from High School Demographic Research

Table 2. Data for Life Table and Cox Regression

Name	Married	Time (in months from W1) to getting married or being censored (reaching the W3 having never married)	Female	High School Graduation	Time (in months from W1 interview) to graduating from high school or being censored (i.e., reaching the W3 having not
Tim	0	3	0	1	3
Sara	1	3	1	0	3
Tom	0	5	0	0	5
Sherry	1	5	1	1	4

Note:

Married: 1 = Married; 0 = Unmarried

Female: 1 = Female; 0 = Male

High School Graduation: 1 = Graduated from High School; 0 = Did not graduate from

High School

Table 3. Data for Discrete Time Analysis

Name	Month	Married	Female	High School Graduation
Tim	1	О	О	О
	2	О	О	О
	3	О	О	1
Sara	1	Ο	1	О
	2	Ο	1	O
	3	1	1	O
Tom	1	О	О	О
	2	Ο	О	O
	3	Ο	O	O
	4	О	Ο	О
	5	О	О	O
Sherry	1	Ο	1	O
	2	О	1	O
	3	O	1	Ο
	4	О	1	1
	5	1	1	1

Note:

Married: 1 = Married; 0 = Unmarried

Female: 1 = Female; 0 = Male

High School Graduation: 1 = Graduated from High School; 0 =

Family Did not graduate from High School Demographic Research

Dependent Variable in Life Table and Cox Regression

Create the date indicator for:

```
Timing of first marriage
 gen marriage t1 = ym(form y1, form m1)
 label variable marriage t1 "century month
 for getting married for the first time"
    Wave I interview
 gen interview t1 = ym(iyear, imonth)
 label variable interview t1 "time for t1 interview"
    Wave III interview
 gen interview t3 = ym(iyear3, imonth3)
 label variable interview t3 "time for t3 interview"
Calculate the number of months to first marriage since Wave I interview
```

```
gen time1 = marriage_t1 - interview_t1 if (marriage_t1 ~=. & interview_t1~=.)
label variable time1 "time for those got married"
```

Calculate the number of months between Wave I and Wave III interview

```
gen time2 = interview t3-interview t1
label variable time2 "time for those did not get married"
```

Calculate the number of months to first marriage or censoring

```
gen time =.
label variable time "timing of the first marriage"
eplace time = time1 if time1 ~=. & mar1 ==1
    ace time = time2 if mar1 ==0
```

Reshape data for Discrete Time Analysis

Use the data created for Cox Regression

use "t:\temp\cox.dta", clear

Table 4. Data for Cox regression

Name	mar1	time	female	gra	_gra_tm
Tim	0	3	0	1	3
Sara	1	3	1	0	3
Tom	0	5	0	0	5
Sherry	1	5	1	1	4

Noted:

mar1: 1 = married for the first time, 0 = did not marry for the first time

time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not gra_tm: the number of months to high school graduation or having never graduated.

Family and Demograp

Expand each observation into multiple observations, depending on the number of months that each original observation needs to get married for the first time or become censored.

expand time

Table 5. Data after using Stata "expand" command

Name	mar1	time	female	gra	gra_tm
Tim	0	3	0	1	3
Tim	0	3	O	1	3
Tim	O	3	O	1	3
Sara	1	3	1	0	3
Sara	1	3	1	Ο	3
Sara	1	3	1	Ο	3
Tom	0	5	O	0	5
Tom	0	5	0	0	5
Tom	0	5	O	0	5
Tom	0	5	O	0	5
Tom	O	5	O	O	5
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4

Noted:

mar1: 1 = married for the first time, 0 = did not time: the number of months to the first marriage since Wave I interview or having never married Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not gra_tm: the number of months to high school graduation or having never graduated.

Demographic Research

Sort the data by the ID variable. Generate a variable "month" to indicate which month to which the observation now belongs.

sort aid

by aid: gen month= n

Table 6. Data after the "month" variable was generated

Table of Ba	ta arter tric	111011111	variable was generated					
Name	mar1	time	female	gra	_gra_tm	month		
Tim	0	3	0	1	3	1		
Tim	0	3	0	1	3	2		
Tim	0	3	0	1	3	3		
Sara	1	3	1	0	3	1		
Sara	1	3	1	0	3	2		
Sara	1	3	1	0	3	3		
Tom	0	5	0	0	5	1		
Tom	0	5	0	0	5	2		
Tom	0	5	0	0	5	3		
Tom	0	5	0	0	5	4		
Tom	0	5	0	0	5	5		
Sherry	1	5	1	1	4	1		
Sherry	1	5	1	1	4	2		
Sherry	1	5	1	1	4	3		
Sherry	1	5	1	1	4	4		
Sherry	1	5	1	1	4	5		

Noted:

mar1: 1 = married for the first time, 0 = did not marry for the first time

time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not graduate

from High School

Family angra_tm: the number of months to high school graduation or having never graduated.

DNIC Research

• Create a variable, married, to indicate the transition to first marriage.

gen married=0
replace married=mar1 if month==time

Table 7. Data after the "married" variable was generated

Table 7. De	tta artor tiro	mamea	variable we	ac genera			
Name	mar1	time	female	gra	_gra_tm_	month	married
Tim	0	3	0	1	3	1	0
Tim	0	3	0	1	3	2	0
Tim	0	3	0	1	3	3	0
Sara	1	3	1	0	3	1	0
Sara	1	3	1	0	3	2	0
Sara	1	3	1	0	3	3	1
Tom	0	5	0	0	5	1	0
Tom	0	5	0	0	5	2	0
Tom	0	5	0	0	5	3	0
Tom	0	5	0	0	5	4	0
Tom	0	5	0	0	5	5	0
Sherry	1	5	1	1	4	1	0
Sherry	1	5	1	1	4	2	0
Sherry	1	5	1	1	4	3	0
Sherry	1	5	1	1	4	4	0
Sherry	1	5	1	1	4	5	1

Noted: mar1: 1 = married for the first time, 0 = did not marry for the first time time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not graduate from High School

gra_tm: the number of months to high school graduation or having never

graduated.

• Check the accuracy of timing of first marriage

Depth ogried trub_Repearch

 Create a variable, graduated, to indicate the timing of high school graduation.

gen graduated=0
replace graduated = gra if month >= gra_tm

Table 8. Data after the "graduated" variable was generated

-			gradaatoa		mac gom				
	Name	mar1	time	female	gra	gra_tm	month	married	graduated
	Tim	0	3	0	1	3	1	0	0
	Tim	0	3	0	1	3	2	0	0
	Tim	0	3	0	1	3	3	0	1
	Sara	1	3	1	0	3	1	0	0
	Sara	1	3	1	0	3	2	0	0
	Sara	1	3	1	0	3	3	1	0
	Tom	0	5	0	0	5	1	0	0
	Tom	0	5	0	0	5	2	0	0
	Tom	0	5	0	0	5	3	0	0
	Tom	0	5	0	0	5	4	0	0
	Tom	0	5	0	0	5	5	0	0
	Sherry	1	5	1	1	4	1	0	0
	Sherry	1	5	1	1	4	2	0	0
	Sherry	1	5	1	1	4	3	0	0
	Sherry	1	5	1	1	4	4	0	1
	Sherry	1	5	1	1	4	5	1	1

Noted: mar1: 1 = married for the first time, 0 = did not marry for the first time

time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not graduate from High School

gra_tm: the number of months to high school graduation or having never graduated.

· Check the accuracy of high school graduation

sort aid

by aid: gen N=_N

tab1 gra if supop==1 & N==month

Table 9. Data for checking the accuracy of high school graduation

_	Table 9. Data for checking the accuracy of high school graduation											
Name	mar1	time	female	gra	_gra_tm	month	married	graduated	N			
Tim	0	3	0	1	3	1	0	0	3			
Tim	0	3	0	1	3	2	0	0	3			
Tim	0	3	0	1	3	3	0	1	3			
Sara	1	3	1	0	3	1	0	0	3			
Sara	1	3	1	0	3	2	0	0	3			
Sara	1	3	1	0	3	3	1	0	3			
Tom	0	5	0	0	5	1	0	0	5			
Tom	0	5	0	0	5	2	0	0	5			
Tom	0	5	0	0	5	3	0	0	5			
Tom	0	5	0	0	5	4	0	0	5			
Tom	0	5	0	0	5	5	0	0	5			
Sherry	1	5	1	1	4	1	0	0	5			
Sherry	1	5	1	1	4	2	0	0	5			
Sherry	1	5	1	1	4	3	0	0	5			
Sherry	1	5	1	1	4	4	0	1	5			
Sherry	1	5	1	1	4	5	1	1	5			

Noted:

mar1: 1 = married for the first time, 0 = did not marry for the first time

time: the number of months to the first marriage since Wave I interview or having

never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not

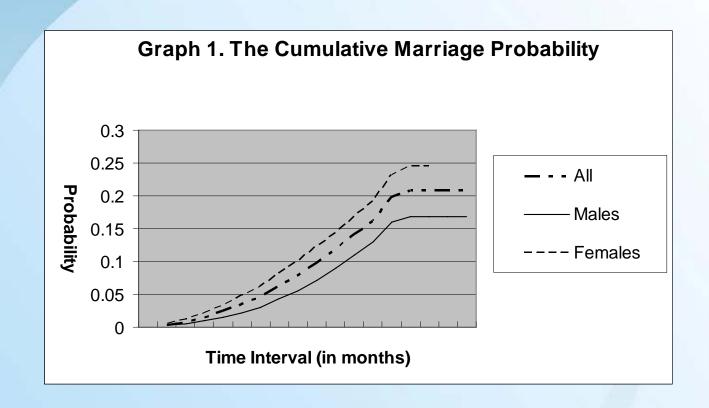
gra_tm: the number of months to high school graduation or having never graduated.

Save the data set for future use

Analyze data

A. Life table

Stata commands:


ltable time mar1 if sub_pop ==1, hazard
ltable time mar1 if sub_pop ==1

Teble 5 Life Table for the Whole Sample

7		nonths)	# of Single Adolescents	# of Adolescents Married	Lost to Follow-Up	Hazards	Cumulative Marriage Probability
О	\rightarrow	6	13995	54	О	0.0039	0.0039
6	\rightarrow	12	13941	68	О	0.0049	0.0087
12	\rightarrow	18	13873	95	О	0.0069	0.0155
18	\rightarrow	24	13778	128	O	0.0093	0.0247
24	\rightarrow	30	13650	155	О	0.0114	0.0357
30	\rightarrow	36	13495	153	O	0.0114	0.0467
36	\rightarrow	42	13342	232	О	0.0175	0.0632
42	\rightarrow	48	13110	220	О	0.0169	0.079
48	\rightarrow	54	12890	274	О	0.0215	0.0985
54	\rightarrow	60	12616	273	О	0.0219	0.118
60	\rightarrow	66	12343	323	О	0.0265	0.1411
66	\rightarrow	72	12020	290	400	0.0248	0.1622
72	\rightarrow	78	11330	327	7288	0.0435	0.1978
78	\rightarrow	84	3715	25	3682	0.0134	0.2085
84	\rightarrow	90	8	0	6	О	0.2085
90	\rightarrow	96	2	0	1	О	0.2085
96	\rightarrow	102	1	0	1	0	0.2085

Life Table Graph

B. Cox regression without Time varying variables

•Stata commands

```
use "T:\temp\cox.dta", clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
stset time, f(mar1)
svy, subpop(sub_pop): stcox female black age_t1 expect
```

• Results:

Survey: Cox regression

Number of strata	=	4	Number of	obs	=	14253
Number of PSUs	=	132	Populatio	n size	=	16629862
			Subpop. n	o. of ob	s =	13995
			Subpop. s	ize	=	16297823
			Design df		=	128
			F(4,	125)	=	101.86
			Prob > F		=	0.0000

_t	 Haz. Ratio	Linearized Std. Err.	t	P> t	[95% Conf	. Interval]
female	1.740813	.097873	9.86	0.000	1.557538	1.945654
black	.5463479	.0565109	-5.84	0.000	.4452316	.6704288
age_t1	1.030068	.0019299	15.81	0.000	1.026256	1.033894
expect	1.266699	.0343744	8.71	0.000	1.200477	1.336573

C. Discrete-time Analysis without Time-varying Variables

• Stata commands:

```
use "T:\temp\discrete.dta", clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
char month [omit] 77
xi: svy, subpop(sub_pop): logistic married i.month female black age_t1 expect
```

• Results:

Survey: Logistic regression						
Number of strata =		4		Number of		1033582
Number of PSUs =		132		Population		1209145097
				Subpop. no		1010143
				Subpop. si		1178862615
				Design df	=	128
				F(85, Prob > F		21.35
				Prob > F	=	0.0000
	 	Linearized				
married	Odds Ratio		t	P> t	[95% Conf	. Intervall
	+					
_Imonth_1	.0855008	.0477686	-4.40	0.000	.0283055	.2582668
_Imonth_2	.0622853	.0339932	-5.09	0.000	.0211541	.1833904
A).						
_Imonth_75	1.04427	.3475159	0.13	0.897	.5405591	2.017355
_Imonth_76	1.187808	.3981339	0.51	0.609	.6119474	2.30557
_Imonth_78	.3509662	.1625097	-2.26	0.025	.1404001	.8773308
_Imonth_79	.1736188	.1291074	-2.35	0.020	.0398639	.7561599
_Imonth_80	.6049959	.3388633	-0.90	0.371	.1997271	1.832601
_Imonth_81	.3521969	.2508042	-1.47	0.145	.0860692	1.441196
_Imonth_82	.1178069	.1170397	-2.15	0.033	.0164983	.8412027
female	1.745988	.0986846	9.86	0.000	1.561246	1.95259
black	5448028	.0566048	-5.85	0.000	.4435634	.6691493
age_t1	1.030225	.0019416	15.80	0.000	1.026391	1.034075
expere	mo10268486h	IC Researce	ch 8.71	0.000	1.201722	1.338792

D. Discrete-time Analysis with a Time-varying Variable

```
Stata commands:
 use T:\temp\discrete, clear
  svyset psuscid1 [pweight = gswgt1], strata(region1)
  char month [omit] 77
  xi: svy, subpop(sub pop): logistic married i.month female black age t1 expect
 graduated
• Results:
Survey: Logistic regression
Number of strata
                                          Number of obs
                                                                 1033582
Number of PSUs
                                          Population size = 1209145097
                         132
                                          Subpop. no. of obs =
                                                                 1010143
                                          Subpop. size = 1178862615
                                          Design df
                                                                     128
                                          F( 86,
                                                     43)
                                                                   21.55
                                          Prob > F
                                                                  0.0000
                         Linearized
    married | Odds Ratio
                         Std. Err.
                                            P> | t |
                                                     [95% Conf. Interval]
                                    -4.06 0.000
  Imonth 1
               .0985339
                        .0562077
                                                     .0318707
                                                                .3046348
  _Imonth_2
                                    -4.71 0.000
                .0711091 .0398916
                                                     .0234342
                                                                .2157742
 Imonth 75
               1.043885
                        .3469749
                                            0.897
                                                     .5407833
                                                                2.015034
                                     0.13
 Imonth 76
               1.187321
                         .3974025
                                    0.51
                                            0.609
                                                     .6122765
                                                                2.302444
                                    -2.26 0.026
 _Imonth_78
                                                      .140746
               .3518995
                         .1629764
                                                               .8798348
 Imonth 79
               .1739343
                        .1292685
                                    -2.35 0.020
                                                     .0399697 .7569009
 Imonth 80
               .6069465
                        .3397445
                                     -0.89
                                           0.374
                                                     .2005091
                                                                1.837244
 _Imonth_81
                                                     .0863356
                .3532947
                         .2515898
                                    -1.46
                                          0.146
                                                                1.445719
                                            0.033
                                                     .016504
 Imonth 82
               .1178734
                        .1171192
                                    -2.15
                                                               .8418673
     female
               1.731455
                        .0973056
                                    9.77
                                            0.000
                                                     1.549238
                                                                1.935104
      black
                .5521323
                         .0567529
                                    -5.78
                                          0.000
                                                     .4505203
                                                               .6766624
               1.028714
                                    15.22
                                            0.000
     age_t1
                         .0019135
                                                     1.024935
                                                                1.032508
               1,266885
                          .0345654
                                     8.67
                                            0.000
                                                     1.200305
                                                                1.337159
                          .1226013
                1.232447
                                     2.10
                                            0.038
                                                     1.012242
                                                                1.500556
  graduated
```

Conclusion

- Survival analysis examines the timing of an event and allows researchers to test factors that may lead to the occurrence of the event.
- For life Table and Cox Regression, there is a need to construct the variables indicating when the event and its predicators occurred. For discrete-time analysis, the data need to be transformed into person-period format.
- Discrete-time analysis is more flexible than Cox Regression.
 - The dummy variables for time can delineate the magnitude of hazards at each time point.
 - Time-varying variables can be easily included in the models
 - It can be extended to examine Multinomial logistic regression.
- For more information on survival analysis
 - Dr. Alfred Demaris has written a book, "Regression With Social Data: Modeling Continuous and Limited Response Variables". This book provides detailed information about assumptions and estimations of several survival models.
 - Dr. Judith Singer and Dr. John Willett have published a book, called "Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence". Data sets, computer programs, outputs and PowerPoint slides for the examples used in this book can be found at http://gseacademic.harvard.edu/alda/
 - University of California at Los Angeles has helpful information on using SAS, Stata, and SPSS for conducting survival analysis at http://www.ats.ucla.edu/stat/seminars/.
 - Dr. David Garson has provided excellent documents on Life Table, Cox Regression, and Event History at http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm.

