Logistic Regression

Logistic regression is a variation of the regression model. It is used when the dependent response variable is binary in nature. Logistic regression predicts the probability of the dependent response, rather than the value of the response (as in simple linear regression).

In this example, the dependent variable is frequency of sex (less than once per month versus more than once per month).

. logistic freqdum age marital racenew attend happy

Logistic regre	Number of obs = LR chi2(5) = Prob > chi2 = Pseudo R2 =		= 0.0000			
freqdum	Odds Ratioa	Std. Err.	z	P> z	[95% Con	f. Interval]
age marital racenew attend happy	.9408818 .17496 .8854209 .9309624 .7156043	.0047102 .0290688 .1564181 .0262984 .087177	-12.17 -10.49 -0.69 -2.53 -2.75	0.000 0.000 0.491 0.011 0.006	.9316952 .1263327 .626292 .8808194 .5636079	.950159 .2423048 1.251765 .9839599 .9085918

a. The "Odds Ratio" is the predicted change in odds for a unit increase in the predictor. When the Odds Ratio is less than 1, increasing values of the variable correspond to decreasing odds of the event's occurrence. When the Odds Ratio is greater than 1, increasing values of the variable correspond to increasing odds of the event's occurrence.

If you subtract 1 from the odds ratio and multiply by 100, you get the percent change in odds of the dependent variable having a value of 1. For example, for age:

$$= 1 - (.941) = .059$$

$$= .059 * 100 = 5.9\%$$

The odds ratio for age indicates that every unit increase in age is associated with a 5.9% decrease in the odds of having sex more than once a month.

b. The R-Square statistic cannot be exactly computed for logistic regression models, so these approximations are computed instead. Larger pseudo r-square statistics indicate that more of the variation is explained by the model, to a maximum of 1.

ANNOTATED OUTPUT--STATA

Interpretation

Recall: When Exp(B) is less than 1, increasing values of the variable correspond to decreasing odds of the event's occurrence. When Exp(B) is greater than 1, increasing values of the variable correspond to increasing odds of the event's occurrence.

Constant = Not interpretable in logistic regression.

Age = Increasing values of age correspond with decreasing odds of having sex more than once a month.

Marital = Increasing values of marital status (married to unmarried) correspond with decreasing odds of having sex more than once a month.

Race = Increasing values of race correspond with increasing odds of having sex more than once a month. Notice that this variable, however, is not significant.

Church Attendance = Increasing values of church attendance correspond with decreasing odds of having sex more than once a month.

Happiness = Increasing values of general happiness correspond with decreasing odds of having sex more than once a month. Recall that happiness is coded such that higher values indicate less happiness.

Logistic Regression (with non-linear variables)

It is known that some variables are often non-linear, or curvilinear. Such variables may be age or income. In this example, we include the original age variable and an age squared variable.

. logistic freqdum age marital racenew attend happy agesquar

Logistic regression					Number of obs LR chi2(6)			1052 314.11
Lo	g likelihood	d = -561.40465	5		Prob : Pseudo	> chi2 o R2	=	0.0000 0.2186
	 freqdum	Odds Ratio	Std. Err.	z	P> z	 [95% 	Conf.	Interval]
	age marital	1.029322	.0274165	1.09 -9.82	0.278	.9769		1.084485
	racenew	.8854594	.1559968	-0.69	0.490	.6269		1.250633
	attend	.9311651	.0264615	-2.51	0.012	.8807		.9845002
	happy agesguar	.7026621 .9990557	.085654 .0002795	-2.89 -3.38	0.004 0.001	<u>.5533</u> .998		.8922928 .9996037

The age squared variable is significant, indicating that age is non-linear.

Logistic Regression (with interaction term)

To test for two-way interactions (often thought of as a relationship between an independent variable (IV) and dependent variable (DV), moderated by a third variable), first run a regression analysis, including both independent variables (IV and moderator) and their interaction (product) term. It is highly recommended that the independent variable and moderator are standardized before calculation of the product term, although this is not essential. For this example, two dummy variables were created, for ease of interpretation. Sex was recoded such that 1=Male and 0=Female. Marital status was recoded such that 1=Currently married and 0=Not currently married. The interaction term is a product of these two dummy variables.

Regression Model (without interactions)

. logistic freqdum age racenew happy attend male married

Logistic regression Log likelihood = -562.91057					Number of obs = LR chi2(6) = Prob > chi2 = Pseudo R2 =		1052 311.10 0.0000 0.2165
freqdum	Odds Ratio	Std. Err.	Z	P> z	[95% (Conf.	Interval]
age racenew happy attend male married	.9407224 .8615719 .7273111 .9422746 1.558383 5.464756	.0047616 .1535544 .0893135 .0269726 .2310822 .9139101	-12.07 -0.84 -2.59 -2.08 2.99 10.16	0.000 0.403 0.010 0.038 0.003	.9314: .6075! .5717: .8908(1.165: 3.9374	547 327 649 347	.9501014 1.221793 .9252252 .996651 2.083978 7.584435

ANNOTATED OUTPUT--STATA

Regression Model (with interactions)

. logistic freqdum age racenew happy attend male married interact

Logistic regression Number of obs = 1052LR chi2(7) = 313.87Prob > chi2 = 0.0000Log likelihood = -561.5232 Pseudo R2 = 0.2184

freqdum	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
 age	.9417151	.0047935	-11.80	0.000	.9323667	.9511572
racenew	.8412302	.1508375	-0.96	0.335	.591956	1.195474
happy	.7244743	.0892968	-2.61	0.009	.5689921	.9224436
attend	9452654	0271617	-1.96	0.050	8935009	1.000029
male	1.913216	.3698852	3.36	0.001	1.309784	2.794655
married	6.93103	1.542039	8.70	0.000	4.481461	10.71953
interact	.6043344	.1827447	-1.67	0.096	.3341046	1.093131

The product term should be significant in the regression equation in order for the interaction to be interpretable. In this example, the interaction term is significant at the 0.1 level.

Interpretation

Main Effects

The married coefficient represents the main effect for females (the 0 category). The effect for females is then 1.94, or the "marital" coefficient. The effect for males is 1.94 - .50, or 1.44.

The gender coefficient represents the main effect for unmarried persons (the 0 category). The effect for unmarried is then .65, or the "sex" coefficient. The effect for married is .65 - .50, or .15.

Odds Ratios

Using "married" as the focus variable, we can say that the effect of being married on having sex more than once per month is greater for females.

Females: $e^{1.936} = 6.93$ Males: $e^{1.432} = 4.20$

Using "gender" as the focus variable, we can say that the effect of being male on having sex more than once per month is greater for marrieds.

Marrieds: $e^{0.15} = 1.16$ Unmarrieds: $e^{0.65} = 1.92$