Descriptive Statistics

PROC MEANS;

VAR age attend happy married racenew male sexfreq; RIIN;

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
AGE	AGE OF RESPONDENT	2751	46.2828063	17.3704867	18.0000000	89.0000000
ATTEND	HOW OFTEN R ATTENDS RELIGIOUS SERVICES	2743	3.6624134	2.7020398	0	8.0000000
HAPPY	GENERAL HAPPINESS	1369	1.8210373	0.6289519	1.0000000	3.0000000
MARRIED	Married	2765	0.4589512	0.4984023	\ 0	1.0000000
RACENEW	NEW RACE RECODE	2762	0.7585083	0.4280652	0	1.0000000
MALE	Male	2765/	0.4441230	0.4969578	0	1.0000000
SEXFREQ	FREQUENCY OF SEX DURING LAST YEAR	215/1	2.8251976	2.0132439		6.0000000

"N" = The number of cases with valid responses for each variable. For general happiness, there are 1369 valid responses.

Since we have coded race, gender, and marital status as dummies, the means can be interpreted as the percent of respondents reporting the focus category (1=male, 1=white, 1=married). For, gender, 44% of the respondents are male. For race, 76% of the respondents are white. For marital status, 46% of the respondents are married.

"Mean" = The mean value for all 2751 cases. Respondents have a mean age of 46.28 years.

"Std. Deviation" = The standard deviation is a measure of dispersion around the mean. For example, the mean age for this sample is 46, with a standard deviation of 17. So, 95% of the cases in a normal distribution will be between 29 and 63.

"Minimum" = The minimum possible value for each variable. Recall that values for general happiness are coded (1) very happy, (2) pretty happy, and (3) not too happy.

"Maximum" = The maximum possible value for each variable.