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Abstract. A smoothness/shock indicator is proposed for the RKDG methods solving nonlinear conservation laws.
A few numerical experiments are presented as evidence that the indicator helps in detecting shocks, high order

discontinuities, regions of smooth solutions, and numerical “instability”.
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1. Introduction

In the numerical computation of hyperbolic conservation laws, the importance of a smoothness
indicator is well known. Some schemes are built-in with smoothness indicators, such as the WENO
schemes ([5] and references there-in). Other smoothness indicators are designed independently from
specific schemes, by using B-splines and local truncation error estimates ([2] and references there-in).

In this paper, we propose a smoothness/shock indicator for the discontinuous Galerkin schemes.
This indicator only depends on the semi-discrete DG scheme. It can be generalized to 2D triangle
meshes verbatim. The cost of computing the indicator is comparable to that of implementing an
explicit Runge-Kutta scheme. We will use a few numerical experiments to show what information
is delivered by the indicator.

The idea of using this indicator comes from one of the author’s previous work on parabolic
problems [4]. In general, when we solve a time-dependent PDE and have a semi-discrete scheme
in space, we can compute the derivatives (with respect to time) of semi-discrete solutions as a
smoothness or smoothing indicator. Here the semi-discrete solutions involved are those of the form
up(t — tn,tn, u}), where the first variable is the time increment, the second variable is an initial
time, and the third variable is an initial value. u} stands for the numerical solution at time ¢,. The
computation of these high order derivatives should not suffer from amplified white noise if there is
sufficient numerical diffusion in the fully discrete scheme. For example, an upwind numerical flux and
an TVD Runge-Kutta method may provide sufficient numerical diffusion. In fact, the boundedness
of the computed smoothness indicator should be considered as a result of numerical smoothing.

2. The smoothness/shock indicator
To solve the scalar conservation law

u + f(u)z =0 (2.1)

with the discontinuous Galerkin method, we have the semi-discrete scheme
(Uh,ta'U)Qj = (f(uh)»vm)Qj + f(uh(x;,1/2))v(x;i1/2) - f(uh($;+1/2))v($;+1/2) (2.2)

in the cell ; = [x;_1/2, Z;41/2], where the Godunov flux is employed under the assumption f/(u) > 0
(for simplicity). The semi-discrete solution wuy, and the test function v are in a discontinuous piecewise
polynomial space of local degree 1, 2 or 3. In each cell, we use the Legendre polynomials as the
basis. To compute the fully discrete numerical solution u}, we use the familiar TVD-RK scheme of
order 2. [1]



As a smoothness/shock indicator at time t¢,, we compute the derivatives of the semi-discrete
solution wy, initiated at (¢,,u]). That is, a smoothness/shock indicator is

SS1I,, = (UZ,Uh,t7Uh,tt7uh,ttt)7 (2-3)

where uy, ¢ is computed at each t,, by replacing uy, in the DG scheme (2.2) with the numerical solution
up. Then, uy, i and up 4 are computed by
(uh,tt» U)Qj = (f’(Uh)uh,m Uz)ﬂj
+ f/(uh (x;71/2))uh,t (xjifl/z)v(m;il/z) (2~4)
= S ) une (@5 ) 0(@5 0 g0),

and

(unee, V), = (f"(un)up o + f'(un)tne, va)o,
[f//(uh($;71/2))ui7t($;71/2) + f/(uh (xj_fl/z))uh,tt (xj_71/2)]v(x;:1/2) (2'5)

[f//(uh(x;ryg))ui,t($;+1/2) + f,(uh(mj+1/2))uh,tt(x;+1/2)]v(x;+1/2)'

+

On the right hand side of (2.4) and (2.5), uy, is replaced by u}, up is computed by (2.2), up 4 is
computed by (2.4).

Remarks:

1. One can compute higher order derivatives in a similar way. It is obvious that the cost of
computing each additional high order derivative is proportional to that of implementing one
extra stage in a Runge-Kutta scheme. Everything is computed explicitly.

2. For 2D cases, once the semi-discrete DG scheme is determined at t,,, the computation of high
order derivatives simply involves taking consecutive derivatives on both sides of the semi-
discrete scheme.

3. Other types of numerical fluxes can be treated in a similar way.

4. The indicator is computed independently from the choice of a Runge-Kutta scheme.

5. Indicator (2.3) will miss stationary shocks and stationary contact discontinuities. We can
compute another indicator to fix this problem. At t,, we still use the same formulas (2.2),
(2.4) and (2.5) to compute the new indicator. The new indicator is still of the form SSI,, =
(W}, wp,ty Un,tt, U ee)- In each formula, uy, is still replaced by the u} computed for the nonlinear
conservation law. The only difference is that we replace the flux in the formulas by f(u) = u,
f'(w) =1, f’(u) = 0. Obviously, the new indicator tells us what would happen if we were
solving u; + u, = 0 with the DG scheme and the initial condition (t,,u}). This equation
has wave speed 1, hence all the spatial discontinuities are reflected by temporal derivatives.
Besides, this new indicator may have a role in spatial error control. The original indicator is
indeed more costly because of the complexity of f(u), however, it should serve the purpose of
temporal error control better than the new one.

In the next section, we will present a few numerical experiments to show what information is
delivered by the indicator.

3. Numerical experiments

In the following examples, we solve the Burgers’ equation u; + (u?/2), = 0 with different initial
conditions. We will have four pictures in each figure from 1 to 5. We refer to the upper-left picture
by NW (north west). The other pictures are referred to in a similar way. In each of these 5 figures,
picture NW is a numerical solution u} at time ¢,, picture NE is the computed uy ¢, picture SW is
Up,+t, and picture SE is up, 4.



Figure 1: A shock captured without limiter

Example 1. Consider a solution of the Burgers’ equation with the boundary condition w(0,¢) = 2
and the initial condition

o f? it ¢ € [0,1]
Un 0= 2 - 2exp(d - o2p) i€ (1,10]

This initial function is in C'°*°[0,10], but a shock will appear in the interval at a later time (approx-
imately ¢t = 1.637). In Figure INW, it shows that a fully developed shock is captured at t = 2. We
did not use a limiter to catch this shock. Instead, we tried a local degree adjustment technique. To
begin with, we use a cubic polynomial in each cell and the 2nd order TVD-RK scheme in time. The
cell size is h = 0.05, the time step size is £ = 0.0025. When the computed up 1+ becomes larger
than a parameter M3 = 28.3 in a cell, we reduce the polynomial in that cell to quadratic by simply
dropping the cubic Legendre polynomial. When the computed up ¢ becomes larger than a param-
eter My = 28.3 in a cell, we reduce the polynomial in that cell to linear by dropping the quadratic
Legendre polynomial. The choice of My and Mj is based on repeated experiments. They should
depend on the cell size. As shown in Figure INE and SW, the shock is located clearly in 1-2 cells.
Since we do not enforce TVD by using a limiter, slight oscillations are expected. Without rigorous
error analysis, we do not want to claim this local degree adjustment technique as an algorithm. We
only want to demonstrate that the indicator does deliver useful information about the shock.

Example 2. Let us consider a solution of the Burgers’ equation with the boundary condition
u(0,t) = 2 and the initial condition

(2 if x € [0,1]
u(z,0) = { 2—2(z—1)%/81 ifx € (1,10].

Figure 2NW shows the initial function. Since there is a discontinuity on the second derivative
Uge (2,0) at @ = 1, there is a corner in wup; shown in Figure 2NE, a jump in wuy, 4 shown in Figure
25W, and a spike in up ¢+ shown in Figure 2SE. Corresponding to the spike, us; has a Dirac
d-function. The discontinuity will remain in the solution and move forward with the wave.

Figure 3 shows a RKDG solution at ¢ = 1.33. The grid size is h = 0.05. The time step size is
k = 0.0025. In every cell, a cubic polynomial is used for the DG discretization. The second order
TVD-RK scheme is used for time marching. Figure 3SNW and NE show that uj and up+ are well
computed (without oscillation). However, Figure 3SW shows some oscillation of uj, 4. Figure 3SE
shows that up 4 is very rough. This is obviously due to the third order polynomial in the cell
of the second order discontinuity. The boundedness of the high order derivatives provides certain
assurance on the smallness of the error of the numerical solution. Further work is needed to obtain
error estimates.

Figure 4 shows another numerical solution at ¢ = 1.33. The grid size and time step size are as
above. In most cells, we still use cubic polynomials. The time marching is still done by TVD-RK
of order 2. When the smoothness indicator has |up ¢:] > M3 = 5 in a cell, we lower the degree of
the polynomial in that cell to quadratic. Figure 4ANW and NE show there is no visible difference on



Figure 5: Py, adjusted, & = 0.003, up ¢+ shows dispersed “numerical instability”
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Figure 2: Initial value with a 2nd order discontinuity
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Figure 3: P3, k = 0.0025, minor oscillation with wuj, ¢
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Figure 4: Pp,, m adjusted locally, k = 0.0025, up, ¢+ less oscillative
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Figure 6: Limiter usage avoided at max and min

up and up . However, Figure 4SW shows that the oscillation of uj 4 is reduced. Meanwhile, Figure
4SE shows that wup 44+ has lost its shape of the d-function. Although the treatment of of lowering
the degree of the polynomial may not be a great one, we have demonstrated that the information
delivered by the indicator is indeed useful.

In Figure 5, we increased the time step size to k = 0.003 (a 20% increment from 0.0025). The
oscillation in up 4 is not only worse, but also spread out. It is the third degree polynomial causing
the numerical effect of oscillation, while it tries to play a role in the approximation of the function in
the cell containing the second order discontinuity. From Figure 5SW we can see that the oscillation
originated at the discontinuity has been transported to the down stream cells. The oscillation of
up,i¢ has remained bounded because we used the local degree reduction technique with Ms; = 5,
otherwise it would have been much bigger. It is worth to point out that the solution wu} still has

the desired total variation at this time. We have detected a potential “numerical instability” in the
sense of TVD and prevented it from getting fully developed. It is also worth to report that, when
we stayed with quadratic elements in all the cells, there was no scattered oscillation at all.

It is interesting to observe that a seemingly TVD-stable computation may actually have large
local error in a subdomain due to the loss of smoothness in the numerical solution. It is out of the

scope of this paper to address the issue in further detail. We only emphasize that the indicator
makes such information available.

Example 3. It is known that the use of a limiter can reduce the polynomials to linear in the cells
near a smooth extremum. In this experiment, we use the indicator to determine if a limiter should
be used in a cell. Only in the cells where the computed uy, ¢+ is bigger than a parameter M, do we
use a limiter. Consequently, no limiter is used at a smooth extremum. The solution of the Burger’s
equation with an initial function,

1
u(z,0) = Z + 3 sin(2rx — ),

has two extreme points in each period. A shock will appear. Over time, the two extreme points
and the shock will merge together. We compute the solution in one period [0, 1] with the periodic
boundary conditions. h = 1/64. k = 0.0025. Quadratic polynomials are used in each cell. The 2nd
order TVD-RK is used for time marching. The limiter we have used here is the generalized slope
limiter AII} in the lecture notes [1] by Cockburn.

In figure 6, we can see the improvement in the approximation when no limiter is used at the

extrema. We have shown three solutions at t = 0.4. The solid curve is a solution computed with the
Lax-Friedrich scheme and extremely small cell and time step sizes. It serves as an “exact solution”
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Figure 7: Comparison of limiter usage

for comparison. The dotted curve is a numerical solution computed by using the standard limiter,
without using the smoothness/shock indicator. The dashed curve is the numerical solution by using
the indicator and the limiter. When the computed w4 is bigger than My = C/h ( = 200 while
h = 1/64), we use the limiter. We plotted the three solutions in the left picture of Figure 6, and
zoomed in at the maximum in the right picture for detailed comparison. Both numerical solutions
have captured the shock in two cells. The big difference between the two numerical solutions is shown
at the extrema. Since the min-mod function test determined to use the limiter at the extrema, there
was only linear approximation over there.

In figure 7, we compare the number of cells where the limiter is used. The o dots indicate the
number of cells in which the limiter is used at a given time by the limiter algorithm in [1]. The
+ dots indicate the number of cells in which the limiter is used as determined by the indicator.
When the solution is still smooth, no limiter is used by the indicator, while 3 to 4 cells are subject
to limiting at each extremum, according to the min-mod function. When the shock is there, the
indicator only uses the limiter in 2 to 3 cells around the shock, while a total of 9 to 13 cells are
involved with the limiter in the other case. After both extrema have merged into the shock around
t = 0.5, the indicator still uses the limiter in 2 to 3 cells, while the min-mod function uses the limiter
in 6 to 7 cells. Again, we have demonstrated the usefulness of the indicator.

4. Summary

As shown in the numerical experiments, with the smoothness/shock indicator proposed in this
paper, we can deliver information on the smoothness of numerical solutions as either PDE or scheme
properties:

1. (a) Shocks; (b) High order discontinuities; (c¢) Intervals of smooth solutions.
2. (a) Numerical “instability”; (b) Numerical smoothing effects.

There is an open problem: how to quantitatively measure all the information obtained from the
indicators. The measurements need to reflect local smoothness properties, and distinguish PDE
discontinuities from numerical phenomena.
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