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Abstract: Unmanned aerial vehicles (UAV) are increasingly used for spatiotemporal monitoring of 
invasive plants in coastal wetlands. Early identification of invasive species is necessary in planning, 
restoring, and managing wetlands. This study assessed the effectiveness of UAV technology to identify 
invasive Phragmites australis in the Old Woman Creek (OWC) estuary using machine learning (ML) 
algorithms: Neural network (NN), support vector machine (SVM), and k-nearest neighbor (kNN). 
The ML algorithms were compared with the parametric maximum likelihood classifier (MLC) using 
pixel- and object-based methods. Pixel-based NN was identified as the best classifier with an overall 
accuracy of 94.80% and the lowest error of omission of 1.59%, the outcome desirable for effective 
eradication of Phragmites. The results were reached combining Sequoia multispectral imagery (green, 
red, red edge, and near-infrared bands) combined with the canopy height model (CHM) acquired 
in the mid-growing season and normalized difference vegetation index (NDVI) acquired later in 
the season. The sensitivity analysis, using various vegetation indices, image texture, CHM, and 
principal components (PC), demonstrated the impact of various feature layers on the classifiers. 
The study emphasizes the necessity of a suitable sampling and cross-validation methods, as well as 
the importance of optimum classification parameters. 

Keywords: Phragmites australis; unmanned aerial vehicles; invasive; machine learning; object-based 
classifiers 

1. Introduction 

The loss and degradation of coastal wetland vegetation due to anthropogenic activities and climatic 
changes motivate researchers to seek sustainable and efficient management strategies. The ability 
to understand the dynamics of wetland vegetation is hindered by access limitations due to the risk 
of damaging habitats and species, fine scale variations of vegetation and hydrology [1]. Mapping, 
identification, and classification of plant types and species are vital in planning, restoring, and managing 
coastal wetlands. Capturing the distribution of alien plant species and particularly controlling the 
invasive ones is a significant challenge that wetland managers and policy makers face [2]. Early 
identification and accurate information about the distribution of invasive species are necessary to 
anticipate, assess, control, and mitigate their negative impacts on the existing ecosystem health [3,4]. 
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These alien invasive plants make an impact on the composition and function of both natural and 
managed ecosystems with substantial economic cost in response to losing or degrading land use 
and eradication efforts [5,6]. The success of an invasion of alien species depends on the plant’s 
ability to invade a new region and the susceptibility of the ecological system which is invaded [7]. 
Blackburn et al. [8] dissect the plant invasion process into several stages, namely, transport, introduction, 
establishment, and spread. During this invasion process, an alien species should pass sequential 
barriers (e.g., geographical, survival, reproductive, and dispersion) to enter, survive, and spread in 
a new territory. The invasive species which successfully pass the barriers, compete for space and 
nutrients in the ecosystem and alter the soil structure and nutrient cycles [9,10]. 

Phragmites australis (later in the text as Phragmites) is one of the most widespread plants globally 
and it is seen as a threat to wetlands worldwide [11]. Phragmites is a tall erect perennial grass that 
aggressively dispersed over eastern North America during the last two decades [10–13]. The Phragmites 
haplotype M, which was introduced from Eurasia, has been rapidly replacing its native types and 
other local plants in most North American wetlands [14]. They disperse to new areas predominantly 
by seed germination and spread asexually by stolons or rhizomes around the existing patches [15,16]. 
Dense Phragmites patches reduce the quality of habitats for fish and bird species, especially due to 
drying out the littoral zones and affecting sedimentation [17,18]. 

Remote sensing is a widely used technology that is capable of providing spatial and temporal 
information about invasive species in wetlands [14]. As remote sensing data analyses become more 
advanced, data integration methods such as multi-sensor and temporal data fusion become prevalent in 
enhancing the extraction of information. The tradeoffs among spatial extents, and spatial and spectral 
resolutions of imagery, affect the quality of information. Several studies fostered hyperspectral data with 
their continuous spectral band configuration, which provide more details on the spectral characteristics 
of plants than multispectral imagery [19]. For example, the Compact Airborne Spectrographic Imager 
(CASI)-1500 and the Airborne Hyperspectral Scanner (AHS) sensors, used to identify the invasive 
plant Spartina densiflora in a wetland, showed promising results using four spectral target detection 
algorithms [20]. The hyperspectral imagery of the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) was found to be capable of mapping invasive plants distributed over large areas with high 
overall accuracy [21], although another study suggested that AVIRIS data were not appropriate to 
map small and highly heterogeneous areas comprised of invasive plants due to the inadequate spatial 
resolution [22]. 

In recent years, many studies have stated the necessity of high spatial resolution imagery to 
map wetlands to compensate for the spectral similarity among plant types [22–25]. The commercially 
available high-resolution (sub-meter spatial resolution, e.g., WorldView and QuickBird) satellite sensors 
provide more spatially detailed images with a small geometric distortion [26]. A classification study 
conducted to distinguish emergent invasive plants in a diked wetland in the western basin of Lake Erie 
using QuickBird (2.4 m spatial resolution) images demonstrated the ability of this sensor to distinguish 
long and narrow patches of invasive plants (Phragmites australis and Typha) [27], while the hyperspectral 
Hyperion imagery (30 m spectral resolution) was not successful in identifying the small and linear 
arrangements of Phragmites australis in the west coast of the Green Bay shoreline [28]. Distribution 
maps of the invasive plant Hakea sericea monitored with WorldView 2 images showed a high overall 
accuracy [29] although the maps were not suitable to detect Hakea sericea at early stages of invasion 
due to the insufficient spatial resolution of the images. A major drawback of using a commercially 
available high-resolution satellite data is the high cost of the images and pre-ordering process related 
to data acquisition. In recent years, the use of an unmanned aerial vehicle (UAV) for detection of 
invasive species is seen as an economical way of obtaining remote sensing images at any desired time. 

UAVs can acquire very high spatial resolution data (~10 cm) with a user defined flight plan and 
flexible revisit time [30]. In addition, UAVs allow flying at different heights which can be utilized to 
adjust the spatial resolution of the images [31]. Consequently, very high spatial resolution imagery 
captured by UAVs became practical in natural resource management to monitor invasive plant species 
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in several different ecosystems [31–33]. Several recent studies [22,31–36] have proved that the use 
of UAV-borne remote sensing is an effective method to classify vegetation. Pande-Chhetri [37] used 
UAV data to classify wetland vegetation with pixel-based and hierarchical object-based classification 
approaches. The object-based classification with a support vector machine (SVM) classifier resulted in 
the highest overall accuracy in the study. While searching for the optimum method to discriminate 
invasive Lantana camara from the forested landscape, Nipadhkar et al. [32] found that the object-based 
classification provided the better visual organization of plant classification and performed satisfactorily. 
Müllerová et al. [22] emphasized the importance of the temporal flexibility in data collection with 
UAVs over Pleiades satellite images in monitoring invasive plants. The best classification accuracy 
for invasive Heracleum mantegazzianum (giant hogweed) was reached during the flowering time using 
the object-based classification approach. This study highlighted the importance of collecting data at 
the correct time of the growing season. Samiappan et al. [33] used five band UAV images to map 
invasive Phragmites australis in a tidal marsh to identify the impact of features such as normalized 
difference vegetation index (NDVI), soil adjusted vegetation index (SAVI) and morphological attribute 
profiles (MAPs). Further, a canopy height model (CHM) generated using the digital terrain model 
(DTM) and the digital surface model (DSM) derived from UAV data becomes useful among remote 
sensing researchers [38–40]. The use of UAV and light detection and ranging (LiDAR) derived CHM 
was identified as an important feature to improve the accuracy in vegetation classification [41]. 

The goal of this study is to explore the effectiveness of UAVs in mapping Phragmites, in the Old 
Woman Creek (OWC) estuary, located in the Lake Erie region in Ohio, using machine learning (ML) 
classifiers: k-nearest neighbors (kNN), support vector machine (SVM), and neural network (NN), and 
their possible advantages over the more traditional approach, maximum likelihood classifier (MLC) 
using pixel- and object-based classification methods. The objectives of the study are: (i) identify the 
best machine learning classification algorithm to detect Phragmites as well as to compare it with the 
parametric MLC; (ii) explore the impact of different feature layers derived from the UAV data on 
the performance of the classifiers, including various vegetation indices from mid- and late-growing 
season, image texture, principal components (PC) and the canopy height model (CHM); (iii) assess the 
optimum use of sample design and cross-validation sampling techniques. The results of this study will 
be helpful to understand the dispersion of Phragmites in the OWC estuary and to plan the eradication 
strategies efficiently. 

2. Materials and Methods 

2.1. Study Area 

The study took place at Old Woman Creek (OWC), a natural estuary located at the southernmost 
point (41◦220N, 82◦300W) of the Lake Erie shoreline near the town of Huron, Ohio (Figure 1). The OWC 
extends approximately 2.1 km2 from the southern shore of Lake Erie [42]. It is one of (the) 29 areas 
protected under the National Estuarine Research Reserve System (NERRS), and it is known for high 
biodiversity and unique water regime [43]. The barrier beach controls the connection between the 
OWC estuary and Lake Erie. It closes the mouth of the beach during times of high rainfall and opens 
it during summer when the water level changes by seiches and storm surges of Lake Erie [42,44]. 
The extent and duration of the water level fluctuation directly influence the variety of vegetation in the 
estuary [43]. 
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Figure 1. Study area located on the southern shoreline of Lake Erie, Ohio, USA. [45] 

The plant life forms in OWC range from terrestrial plants, which tolerate occasional submergence, 
to the plants completely adapted to survive only in an aquatic environment [44]. Over 800 terrestrial 
and aquatic species of vascular plants have been identified in its watershed [46]. While increased water 
levels transform several former wetlands to shallow open-water areas with a small amount of aquatic 
vegetation [42], the reduction of the water level, on the other hand, results in the increase of the 
distribution of invasive plants in OWC [43]. Currently, Phragmites is observed as the most dominant 
invasive plant type in OWC [47] and Lythrum salicaria (purple loosestrife), Myriophyllum spicatum 
(Eurasian water-milfoil), Limnobium laevigatum (frogbit), and Alloaria petiolata (garlic mustard) are also 
being observed. Phragmites spreads rapidly toward the south along the banks of the creek during low 
water level periods [44]. Dense patches of invasive Phragmites were observed near the estuary mouth 
and on both sides of the road running through the site (Figure 1). Phragmites is often seen within 
several cattail patches on the site. The study site is surrounded by tall trees on the banks of the estuary. 
The star-shaped island covers a larger area of the study site, and the rest is covered with aquatic plants 
and water. The aquatic area is mostly covered with floating and emerging plants. Access is restricted 
to most of the south, west, and southwest sections of the estuary with densely grown, submerged, and 
floating plants (Figure 1). 

2.2. Field Data Collection 

UAV imagery over the study site was acquired on two days: 8 August 2017 (mid-growing 
season), and 18 October 2017 (late-growing season). The former image was the main image used in the 
process of classification supported by vegetation indices derived from the October image. The UAV 
used in this study was a SenseFly eBee Ag model [48]. The weight of the eBee is approximately 700 g 
and the flight time was between 25 and 30 min. Flight planning was performed with the eMotion 2 [49] 
software package. The ceiling of the flights was set at 120 m. Lateral and longitudinal overlaps of the 
flight plans were set to 75%. The flight radius was set to 880 m. The flights were carried out in clear 
weather conditions with wind speed between 9 and 18 km h−1. 

A Parrot Sequoia camera attached to the UAV, with green (G) (530–570 nm), red (R) (640–680 nm), 
red edge (RE) (730–740 nm), and near-infrared (NIR) (770–810 nm) spectral bands, was used to acquire 
the images. The spatial resolution of the images was 13.90 cm. One additional flight was conducted 
using the SONY DSC WX 220 RGB (SONY Corporation of America, New York, USA) camera on the 
same day, 8 August 2017. The purpose of acquiring images with the RGB camera was to use it as a 
visual aid to identify plants in the estuary, which were clearly distinguished with better spatial 
resolution of 3.43 cm, as well as in the process of validation. The RGB camera was not used in the 
classification process as it lacked the NIR band. 

Figure 1. Study area located on the southern shoreline of Lake Erie, Ohio, USA [45]. 

The plant life forms in OWC range from terrestrial plants, which tolerate occasional submergence, 
to the plants completely adapted to survive only in an aquatic environment [44]. Over 800 terrestrial 
and aquatic species of vascular plants have been identified in its watershed [46]. While increased 
water levels transform several former wetlands to shallow open-water areas with a small amount of 
aquatic vegetation [42], the reduction of the water level, on the other hand, results in the increase of the 
distribution of invasive plants in OWC [43]. Currently, Phragmites is observed as the most dominant 
invasive plant type in OWC [47] and Lythrum salicaria (purple loosestrife), Myriophyllum spicatum 
(Eurasian water-milfoil), Limnobium laevigatum (frogbit), and Alloaria petiolata (garlic mustard) are also 
being observed. Phragmites spreads rapidly toward the south along the banks of the creek during 
low water level periods [44]. Dense patches of invasive Phragmites were observed near the estuary 
mouth and on both sides of the road running through the site (Figure 1). Phragmites is often seen within 
several cattail patches on the site. The study site is surrounded by tall trees on the banks of the estuary. 
The star-shaped island covers a larger area of the study site, and the rest is covered with aquatic plants 
and water. The aquatic area is mostly covered with floating and emerging plants. Access is restricted 
to most of the south, west, and southwest sections of the estuary with densely grown, submerged, and 
floating plants (Figure 1). 

2.2. Field Data Collection 

UAV imagery over the study site was acquired on two days: 8 August 2017 (mid-growing season), 
and 18 October 2017 (late-growing season). The former image was the main image used in the process 
of classification supported by vegetation indices derived from the October image. The UAV used in 
this study was a SenseFly eBee Ag model [48]. The weight of the eBee is approximately 700 g and 
the flight time was between 25 and 30 min. Flight planning was performed with the eMotion 2 [49] 
software package. The ceiling of the flights was set at 120 m. Lateral and longitudinal overlaps of the 
flight plans were set to 75%. The flight radius was set to 880 m. The flights were carried out in clear 
weather conditions with wind speed between 9 and 18 km h−1. 

A Parrot Sequoia camera attached to the UAV, with green (G) (530–570 nm), red (R) (640–680 nm), 
red edge (RE) (730–740 nm), and near-infrared (NIR) (770–810 nm) spectral bands, was used to acquire 
the images. The spatial resolution of the images was 13.90 cm. One additional flight was conducted 
using the SONY DSC WX 220 RGB (SONY Corporation of America, New York, USA) camera on the 
same day, 8 August 2017. The purpose of acquiring images with the RGB camera was to use it as a visual 
aid to identify plants in the estuary, which were clearly distinguished with better spatial resolution 
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of 3.43 cm, as well as in the process of validation. The RGB camera was not used in the classification 
process as it lacked the NIR band. 

In addition to the UAV data acquisition, a handheld PSR 3000 Spectral Evolution spectroradiometer 
was used to collect in situ spectral measurements of five wetland plants of interest: lotus, lily, duckweed, 
Phragmites, and cattails in the period from 31 July 2017, to 21 August 2017. The spectroradiometer 
covers the wavelength range from 350 nm to 2500 nm. Spectral resolutions of the instrument are 3 nm 
from 350 nm to 700 nm, 8 nm from 700 nm to 1500 nm, and 6 nm from 1500 nm to 2100 nm of the 
spectral range [50]. 

To recognize critical regions on the hyperspectral signatures and to select vegetation index which 
would possibly enhance the process of classification, thirty averaged spectral measurements, conducted 
at approximately 0.5 inches above the leaves, were taken over various locations for each selected plant 
type. DARWin SP [50] was used to process the data. 

2.3. Study Workflow 

2.3.1. Image Pre-Processing 

Pre-processing of UAV images included geotagging and mosaicking of the raw images as well as 
generation of digital surface model (DSM) and digital terrain model (DTM). UAV images taken by 
the cameras were geotagged with eMotion 2 software using the log files generated by eBee during 
each flight. The geotagged images were orthorectified and mosaicked as reflectance images using 
Pix4Dmapper Pro [51]. The projected coordinate system was set to WGS 1984 UTM Zone 17 N. In order 
to combine data from different dates, the Sequoia generated multispectral image taken on 18 October 
was georegistered to the image taken on 8 August. The registration was performed with the image 
registration workflow tool of ENVI 5.4 using six reference points on each image. The RMSE error 
between the two images was 1.32 pixels. 

The area with wetland vegetation was extracted with two masking steps. First, the areas that 
consisted of water and built-up features were masked by using NDVI and its threshold of 0.22. Second, 
the vegetated area with the height over 4 m was masked to remove trees and tall vegetation. Among 
the selected wetland plant types, Phragmites are the tallest plant type which grows up to maximum 
heights of 3–3.5 m in the estuary. 

2.3.2. Derived UAV Products 

Several feature layers were derived from UAV products: various band indices, texture images, 
CHM, and PC. They were added to the original UAV bands (G, R, RE, and NIR) in the process of 
classification one by one to explore if and how each layer might enhance the process. The purpose of 
this sensitivity analysis was to select one feature layer within each feature group, which produced the 
lowest errors of omission for Phragmites, and then to combine them and monitor the trends and possible 
improvements in accuracy assessments. The goal was to reduce not only the overall accuracy, but also 
the omission errors for Phragmites, an important criterion for successful eradication of Phragmites. 

Band Indices 

Six simple band ratios and three normalized band indices were selected based on the differences 
between the field hyperspectral signatures of the five wetland plants (Table 1). The band indices were 
calculated for the images taken on both days, 8 August and 18 October, to explore the effect of their 
temporal changes on classification. Due to the different phenology state of plants and, thus, better 
separability of spectral signature between the plants, data acquired in the late-growing season, may 
enhance the classification process [22]. 
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Table 1. Normalized and simple band indices used in the classification methods. 

Band Index Equation Reference 

NDVI (NIR—Red)/(NIR + Red) [52] 
NDRE (NIR—Red Edge)/(NIR + Red Edge) [53] 
NDGI (NIR—Green)/(NIR + Green) [54] 

SR1 NIR/Red [55] 
SR2 NIR/Green [56] 
SR3 NIR/Red Edge [57] 
SR4 Red Edge/Red [58] 
SR5 Red/Green [57] 
SR6 Green/Red Edge [58] 

NDVI = Normalized Difference Vegetation Index; NIR = Near-Infrared; NDRE = Normalized Difference Red Edge; 
NDGI = Normalized Difference Green Index; SR = Simple Ratio. 

Image Texture 

Chavez [59] showed that the spatial distribution of spectral variability of vegetation is higher 
within the NIR band than within the visible (RGB) spectral region over an area. Thus, the NIR band 
of the 8 August image was used to calculate the texture values in the current study. The gray level 
co-occurrence matrix (GLCM) tool within ENVI 5.4 software (Harris Geospatial Solutions, Broomfield, 
Colorado, USA) was used to calculate eight GLCM measures: mean, contrast, homogeneity, second 
moment, correlation, dissimilarity, entropy, and variance. Since the focus was to map Phragmites, which 
is a thin, erect plant, the kernel size was set to 3 × 3 pixels. 

Principal Components 

The principal component transformation was performed with the forward principal component 
analysis (PCA) rotation tool. PCA converts the original multispectral bands to a new set of bands 
producing the highest variance in the first PCA band, while the variance is reduced sequentially from 
band 1 to band 4 [60]. 

Canopy Height Model 

DSM represents the elevations of the objects on the ground and DTM indicates the elevation of 
the bare land [61]. The canopy height model (CHM) was created by subtracting DTM from DSM 
using Bandmath tool in ENVI 5.4. CHM indicates the absolute heights of the objects within the image 
extent. The spatial resolutions of DSM and DTM created with Pix4D were 13.04 cm and 65.02 cm. Thus, 
both DSM and DTM were resampled to 13.90 cm spatial resolution to keep the pixel size consistent 
between images. 

2.3.3. Classification 

Image classification was performed using pixel- and object-based classifiers. The ENVI 5.4 software 
package was used for pixel-based classifications, and Trimble eCognition Developer 9 [62] was used to 
perform object-based classifications. All image bands were scaled to the pixel values ranging between 0 
and 100 before the classification to be able to generate meaningful objects [63]. The images were classified 
into five classes: Phragmites, cattails, lotus, lily, and duckweed. In this study, the MLC, SVM, and NN 
classifiers were used in the pixel-based approach, and two classifiers, SVM and kNN, were used in the 
object-based method. All algorithms used in the study, except the parametric MLC, are non-parametric 
ML classifiers and make no assumptions on the data distribution. The ML classifiers were compared to 
the traditional pixel-based MLC to explore possible advantages of ML algorithms [64]. The feed forward 
NN classification was performed by the Neural Net function. The values were selected as suggested in 
Ndehedehe [65]. The NN classifier was selected as it could learn complex patterns in training data, 
generalize the noise of data, and perform classification with a lower number of samples [66]. The SMV 
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classifier was used within both the pixel- and object-based methods. Radial basis function (RBF) was 
used with the SVM classifier as it performed better than other kernels [67,68]. Several studies suggested 
that SVM classifies image accurately with a small number of training samples [69–71]. The kNN classifier 
is a widely used object-based classification algorithm and one of the simplest ML classifiers. 

The parameters of the non-parametric classifiers were optimized before the process of 
classification [64,69] (Table 2). Within the object-based classification, the image was first separated into 
segments (object) with 10, 20, 40, 50, 75, and 100 scale parameters and then classified into the five classes 
as explained below [72]. The segment boundaries were examined after each segmentation to ensure 
that segments consisted of only one plant type. After a visual comparison among segmentations, the 
best scale parameter for segmentation of the image was identified as 40. Several segmentations were 
performed with fixed 40 scale parameter to find the best compactness parameter of 0.5 which resulted 
in the most realistic shapes of segment boundaries. The higher value of the shape parameter decreases 
the consideration of spectral information during segmentation. Consequently, the shape parameter 
was set to 0.1 to maximize the consideration of the band spectral information. The weight values for 
each image layer were set to 1, to consider all the bands as equally important in the classification. 

Table 2. Parametrization using four original bands for pixel- and object-based classification methods. 

Type Classifier Parameter Value 

SVM 
C 

Gamma 
50 

0.25 

Pixel-based 

NN 

TTC 
TR 
TM 

RMSEC 
NHL 

NI 

0.20 
0.20 
0.90 
0.01 

1 
1000 

Object-based SVM 
C 

Gamma 
100 

0.001 

kNN k 2 

TTC = Training threshold contribution; TR = Training rate; TM = Training momentum; RMSEC = Root mean square 
exit criteria; NHL = Number of hidden layers; NI = Number of iterations. 

The UAV image acquired on 8 August 2017 was classified at three different levels of complexity 
using the proposed classifiers considering: (i) the four original bands (G, R, RE, NIR) (4sq); (ii) the 
sensitivity analysis where one feature layer at a time was added to 4sq, including information from the 
October image; and (iii) the combination of representative feature layers with the best performance 
added to 4sq. The overall classification accuracy, kappa value, and errors of omission and commission 
for the Phragmites class were used to compare the classifiers. The optimum set of accuracy parameters 
for each classifier was decided to be the one with high overall accuracy (OA) and with the least error of 
omission, a critical point for eradication of invasive species and wetland management. The workflow 
is shown in Figure 2. 
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2.3.4. Sample Design 

Stehman and Czaplewski [73] defined the sampling design as the protocol that should be followed 
during the selection of sampling units as training and validation regions of interest (ROIs). A stratified 
random sampling design was used to create training and validation data sets in this study. Several 
patches were chosen for each plant type, and then ROIs were randomly selected within each patch. 
The ROIs were created based on the GPS coordinates recorded in the field and additional ROIs were 
visually selected from the RGB image. 

The selection of ROIs started with one pixel, and the rest of the pixels was calculated by the Grow 
ROIs from Neighboring Pixels function, a spatially smooth technique [73]. The one-pixel ROIs were 
allowed to grow, using the criteria of the within-two standard deviations of pixel values, up to the 
maximum number of eight neighboring pixels [74]. The ROIs consisted of at least four pixels after 
applying the Grow ROIs function. The number of training data could heavily impact the classification 
accuracy [75]. In this study, the number of ROIs for each plant type was selected according to the 
proportional area covered with each plant type. Forty-eight ROIs were selected for each lotus, lily, 
and cattails, as these plants were most abundant. The number of ROIs selected for duckweed and 
Phragmites were 39 and 33, respectively. 

In order to minimize the uncertainties that were observed in this study while examining the 
impact of different sampling designs and different numbers of ROIs on the overall accuracy, the 
three-fold cross-validation approach was used to assign ROIs to the classification and validation 
processes. The spatial distribution of ROIs was kept equal when splitting the ROIs into three sets. 
Two sets of ROIs were used as classification data and the remaining set as validation data through the 
iterative process. The classification accuracy results were averaged after the process. Although the 
k-fold cross-validation is computationally extensive, it is most suitable when the study aims to find the 
precise error rates of the classifiers [76]. This method compensates for errors that could arise due to a 
smaller number of samples used in the classification and validation. 

3. Results 

The image mosaics created for the study area for August (called 4sq hereafter) and October using 
Sequoia camera (Figure 3a,b) show senescence of some wetland plants in October. This temporal 
variation is critical to derive NDVI from the October image (NDVIOct) and to improve the classification 
results, as shown below. The RGB image (Figure 3c) shows more detail and was useful as supplementary 
data in the ROI collection and validation processes. Most of the shaded areas, especially in the Sequoia 
images, are removed in the process of masking, as most of the shadows were over water, roads or 
within trees. 
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Distinctive differences between the plants’ spectral signatures, collected by the hand-held 
spectroradiometer, are observed in NIR and RE spectral ranges where lotus exhibits the highest and 
Phragmites the lowest values (Figure 4). In the green spectral region, the spectral signal is similar 
between cattails, lotus, and lilies, somewhat higher for duckweeds and relatively low for Phragmites. 
A similar trend is observed in the red spectral range except for lotus whose reflectance decreases and 
becomes almost identical to the reflectance of Phragmites. The Phragmites signature is relatively 
distinctive from other plants as it keeps similar values in red and green and the lowest values in 
NIR/RE regions, which is expected given the earthy color of the plant. In particular, the similarity of 
the reflectance in the red and the dissimilarity in the NIR bands between Phragmites and lotus is in 
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and lotus. 

 
Figure 4. Averaged spectral signatures of the plants of interest in the Old Woman Creek (OWC) 
estuary. The color bars show the spectral ranges of green (G), red (R), red edge (RE) and 
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Figure 3. Unmanned aerial vehicle (UAV) images using (a) Sequoia camera on 8 August 2017; (b) 
Sequoia on 18 October 2017 (false colors near-infrared (NIR) band in red, red band in green, red edge 
(RE) band in blue in both images); and (c) RGB camera taken on 8 August 2017 (true color image). 

Distinctive differences between the plants’ spectral signatures, collected by the hand-held 
spectroradiometer, are observed in NIR and RE spectral ranges where lotus exhibits the highest 
and Phragmites the lowest values (Figure 4). In the green spectral region, the spectral signal is similar 
between cattails, lotus, and lilies, somewhat higher for duckweeds and relatively low for Phragmites. 
A similar trend is observed in the red spectral range except for lotus whose reflectance decreases 
and becomes almost identical to the reflectance of Phragmites. The Phragmites signature is relatively 
distinctive from other plants as it keeps similar values in red and green and the lowest values in 
NIR/RE regions, which is expected given the earthy color of the plant. In particular, the similarity of 
the reflectance in the red and the dissimilarity in the NIR bands between Phragmites and lotus is in 
accordance with our findings shown below that NDVI index perform best to differentiate Phragmites 
and lotus. 
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3.1. Pixel-Based Classification 

The best results for 4sq are attained with the SVM classifier (OA = 90.47%) and then with MLC 
and NN are 88.23% and 84.58%, respectively (Table 3). While OA reaches relatively high values for all 
classifiers, the class classification accuracy (i.e., correctly classified percentage per class) is considerably 
lower for Phragmites and lotus than other plants, 82.42% and 82.35%, respectively (Table 3). It is 
observed from the results that Phragmites are commonly misclassified as lotus and to a lesser extent 
as cattails, 15.99% and 1.59%, respectively, and that 1.15% of cattails and 8.89% lotus are classified 
as Phragmites. The errors of commission (CE) and omission (OE) are relatively high for Phragmites 
(CE = 15.68% and OE = 17.58%, respectively). 

Table 3. Accuracy assessment for each class of the 4sq image. Misclassification among Phragmites, 
cattails, and lotus, and overall classification accuracy and kappa values for each classifier (CE = errors 
of commission; OE = errors of omission). 

Class Class Accuracy % CE % OE % 

Phragmites 
Cattails 
Lotus 
Lily 

Duckweed 

82.42 
98.28 
82.35 
90.51 
97.83 

15.68 
2.70 

16.95 
8.90 
4.64 

17.58 
1.72 
17.65 
9.49 
2.17 

Class Commission (Phragmites) % Omission (Phragmites) % 

Cattails 
Lotus 

1.15 
8.89 

1.59 
15.99 

Classifier OA % Kappa 

NN 
SVM 
MLC 

84.58 
90.47 
88.23 

0.81 
0.88 
0.85 

Although differences between spectral signatures are observed in Figure 4, the UAV-derived NDVI 
values between Phragmites, cattails, and lotus do not differ significantly from each other in August 
(Table 4). Thus, as expected, the NDVI feature layer from August was found not to be beneficial to 
the classifications and it was excluded from further analysis. The reduction in NDVI from August to 
October is greater for cattails and lotus compared to Phragmites as suggested by the Tukey–Kramer 
test (Table 4). Nevertheless, NDVIOct is statistically different among the plants and it improves the 
classifications (Table 5). This seasonal trend was observed for all vegetation indices as shown in Table 5. 

Table 4. Results of ANOVAs performed among Normalized Difference Vegetation Index (NDVI) values 
of Phragmites, cattails, and lotus generated for the 8 August and 18 October images. 

Date 
A p-Value 

ANOVA Test 

Mean NDVI Value 

8 August 
18 October 

0.05 
0.05 

0.26 
0.00 

Phragmites (0.76), Cattails (0.77), Lotus (0.81) 
Phragmites (0.45), Cattails (0.23), Lotus (0.12) 

Tukey Kramer Test (Absolute Difference/Critical Range) 

18 October 
Phragmites vs. Cattails 34.39/5.84 
Phragmites vs. Lotus 14.78/5.84 

Cattails vs. Lotus 19.61/5.84 
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Table 5. Overall accuracy (OA), kappa value, errors of commission (CE) and omission (OE) for 
Phragmites class (Ph) for the case when each layer is separately stacked to 4sq (pixel-based classification 
using support vector machine (SVM)). 

Feature Type Layer OA % Kappa CE % (Ph) OE % (Ph) 

NIR/Green 
NIR/Red 

NDVI 

92.29 
90.97 
93.43 

0.90 
0.89 
0.92 

4.00 
13.85 
4.86 

20.69 
19.79 
5.56 

NDGI 91.14 0.89 9.80 20.69 
Band Indices (8 October) NDRE 92.57 0.91 8.16 22.41 

NIR/Red Edge 
Red Edge/Red 

Green/Red Edge 
Red/Green 

91.71 
90.86 
90.86 
90.22 

0.90 
0.89 
0.89 
0.88 

5.88 
8.00 
8.16 

15.62 

17.24 
20.69 
22.41 
18.37 

Mean 91.14 0.89 10.20 24.14 
Variance 91.71 0.90 7.69 17.24 

Texture (8 August) 

Homogeneity 
Contrast 

Dissimilarity 
Entropy 

Second moment 

93.14 
90.57 
93.14 
91.71 
92.28 

0.91 
0.88 
0.91 
0.90 
0.90 

2.08 
8.16 
2.08 
2.13 
2.08 

18.97 
22.41 
17.97 
20.69 
18.97 

Correlation 92.57 0.91 9.80 20.69 

Elevation (August 8) CHM 93.59 0.92 1.75 9.53 

PC1 91.14 0.89 0.00 15.52 
Principal Components 

(August 8) 
PC2 
PC3 
PC4 

93.71 
90.00 
90.28 

0.92 
0.87 
0.88 

16.06 
15.09 
8.16 

18.97 
22.41 
22.41 

The SVM accuracy parameters for the sensitivity analysis of classification, where the feature layers 
(band indices, texture, CHM, and PC bands) are stacked to the 4sq image one by one, are shown in 
Table 5. Out of all indices used in the study, NDVIOct performs best with the highest overall accuracy 
of 93.43%, the lowest error of omission of 5.56%, and second lowest error of commission of 4.86%. 

Just a slight improvement of the OA values is observed when texture information is added to 
4sq. While the errors of commission are considerably decreased down to 2.08% for several texture 
layers, the errors of omission are increased for most of them. Variance is the only layer that results in a 
somewhat, but insignificantly, lower error of omission (OE = 17.24%) when compared to the 4sq case 
(OE = 17.58%, see Table 3), and thus, it was selected as the texture layer with the best contribution to 
the classification. CHM performs well, resulting in high OA (OA = 93.59%) and relatively low errors of 
commission and omission (1.75% and 9.53%, respectively). PCs do not contribute considerably to the 
classification of Phragmites. PC1 results in somewhat, but not considerably, lower error of omission 
(OE = 15.52%) than observed in the 4sq case (OE = 17.58%, see Table 3). 

In summary, the sensitivity analysis suggests that each additional layer to 4sq increases OA (except 
PC3 and PC4), although in many cases the increase is negligible. The lowest error of omission is 
reached with NDVIOct; the second lowest error of omission for the Phragmites class is achieved by 
using the CHM layer; and then negligibly lower by using PC1 and Variance (Var) layers, respectively. 

The resulting classification accuracies based on the combination of the selected feature layers for 
the pixel-based classifiers are shown in Table 6. Among the three pixel-based classifiers, when both 
NDVIOct and CHM layers are added to 4sq, the highest overall classification accuracy with the value 
94.80% and the highest kappa value of 0.93 are achieved with the NN classifier. The overall accuracy 
and kappa values decrease when adding more layers (PC1 and Var) to the NN and SVM classifiers. 
The maximum overall accuracy for MLC is reached for the 4sq+NDVIOct combination (93.46%), and it 
decreases to 92.92% when CHM is added. The kappa values follow the trend. Any additional layer 
either decreases the accuracy or produces non-realistic values for MLC (Table 6). The ML methods do 
not yield considerably better results than MLC. 
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Table 6. Overall accuracy (OA) and kappa value, Phragmites class classification accuracy, and errors of commission (CE) and omission (OE) for pixel-based classification 
methods with feature layers stacked to 4sq image. 

Classifier 
OA% 

4sq 

Kappa 

4sq+NDVIOct 

OA% Kappa 

4sq+NDVIOct+CHM 

OA% Kappa 

4sq+NDVIOct+CHM+PC1 

OA% Kappa 

4sq+NDVIOct+CHM+PC1+Var 

OA% Kappa 

NN 
SVM 
MLC 

84.58 
90.47 
88.23 

0.81 
0.88 
0.85 

91.26 
93.43 
93.46 

0.89 
0.92 
0.92 

94.80 
94.58 
92.92 

0.93 
0.93 
0.91 

92.96 
94.33 
N.A. 

0.91 
0.93 
N.A. 

94.68 
93.12 
N.A. 

0.93 
0.91 
N.A. 

Phragmites Class Classification Accuracy % 

NN 
SVM 
MLC 

82.30 
82.42 
87.26 

96.03 
94.43 
95.24 

98.41 
95.24 
96.83 

96.03 
94.45 
N.A. 

97.58 
94.45 
N.A. 

CE % OE % CE % OE % CE % OE % CE % OE % CE % OE % 

NN 
SVM 
MLC 

22.53 
15.68 
20.58 

17.70 
17.58 
12.74 

6.06 
4.86 
3.62 

3.97 
5.56 
4.76 

4.51 
3.03 
2.22 

1.59 
6.76 
3.17 

3.13 
3.03 
N.A. 

3.97 
5.55 
N.A. 

2.96 
3.03 
N.A. 

2.42 
5.55 
N.A. 



Remote Sens. 2019, 11, 1380 13 of 23 

Similarly, the class classification accuracies for Phragmites increase for all classifiers when 
NDVIOct is added and further increase when CHM is included. Maximum values are reached 
for the 4sq+NDVIOct+CHM combination for all three classifiers. The errors of omission are significantly 
lowered with NDVIOct and further reduced by adding CHM for all classifiers. The lowest error 
of omission is achieved with the 4sq+NDVIOct+CHM combination using NN (OE = 1.59%). MLC 
performs well with the lowest error of commission among all classifiers and somewhat higher error of 
omission than NN (CE = 2.22%; OE = 3.17) for the same (4sq+NDVIOct+CHM) combination (Table 6; 
Figure 5). The additional PC1 and Var layers do not improve the performance of any of the classifiers. Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 22 
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Figure 5. Mapping wetland vegetation in OWC using pixel-based neural network (NN) support vector 
machine (SVM), and maximum likelihood classifier (MLC) classifiers for (a) 4Sq, (b) 4sq+NDVIOct, (c) 
4Sq+NDVIOct+canopy height model (CHM). 

3.2. Object-Based Classification 

The segmented images, generated prior to the object-based classification, were classified following 
the same band combinations. The results of the classifications are shown in Table 7, for the overall and 
class accuracy, respectively. 
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Table 7. Overall accuracy (OA) and kappa value, Phragmites class classification accuracy, and errors of commission (CE) and omission (OE) for object-based classification 
methods with feature layers stacked to 4sq image. 

Classifier 
OA% 

4sq 

Kappa 

4sq+NDVIOct 

OA% Kappa 

4sq+NDVIOct+CHM 

OA% Kappa 

4sq+NDVIOct+CHM + PC1 

OA% Kappa 

4sq+NDVIOct+CHM+PC1+Var 

OA% Kappa 

SVM 
kNN 

87.69 
86.92 

0.84 
0.84 

89.23 
84.62 

0.86 
0.81 

92.31 
89.23 

0.90 
0.86 

92.30 
90.77 

0.90 
0.88 

91.54 
84.62 

0.89 
0.81 

Phragmites Class Classification Accuracy % 

SVM 
kNN 

75.00 
75.30 

80.70 
60.35 

92.58 
91.00 

92.30 
89.25 

90.45 
89.10 

Classifier CE % OE % CE % OE % CE % OE % CE % OE % CE % OE % 

SVM 
kNN 

28.57 
2.13 

25.00 
20.69 

10.20 
1.50 

15.40 
40.00 

3.57 
1.78 

5.32 
10.20 

3.95 
1.50 

6.25 
10.43 

5.75 
1.25 

6.38 
10.35 
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SVM performs slightly better than the kNN for all layer combinations but overall, both classifiers 
showed lower OA than any of the pixel-based classifiers. The addition of the NDVIOct to 4sq improves 
the OA values for SVM by approximately 2% (from 87.69% to 89.23%), while the overall accuracy for 
kNN is reduced by 2% (from 86.92% to 84.62%). Similar to the pixel-based classifications, the highest 
overall classification accuracy was achieved with SVM for the band combination of 4Sq+NDVIOct+CHM. 
Although the differences are not significant, the combination of more bands does not improve the 
overall accuracy and kappa values, with an exception when PC1 is added to kNN. 

The combination of NDVIOct+CHM layers reduces the error of commission for the Phragmites 
class from 28.57% to 3.57% with SVM and from 2.13% to 1.78% with kNN. Similar to the pixel-based 
classification approach, the minimum errors of omission are observed for the 4sq+NDVIOct+CHM 
combination for SVM (from 25.00% to 5.32%), and no further reduction is observed by adding the layers 
(Table 7). The 4sq+NDVIOct+CHM is the combination that represents the cutoff point where the errors 
of omission and commission do not improve after adding additional layers. The positive attribute 
of kNN is that this classifier exhibits lower errors of commission while SVM is more consistent and 
predictable in reducing the errors of omission (Table 7). Both classifiers exhibit lower class accuracies 
and significantly higher errors of omission than the pixel-based approaches. 

The overall findings in this study can also be supported by visualizing the classified UAV images 
(Figure 6). The NN classifier corresponds to the highest classification accuracy of Phragmites and lowest 
misclassification of Phragmites into cattails. Among the selected classifiers in Figure 6, the object-based 
SVM shows the lowest Phragmites classification accuracy due to the misclassification of Phragmites 
into the cattails class. Similar visual details can be observed between Phragmites and lotus across the 
study site. 
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In comparison, between the pixel-based and object-based classifiers used in this study, there is a 
noticeable trend that the pixel-based NN classifier demonstrated the best results to detect Phragmites 
and the lowest error of omission (Figure 7). Furthermore, the findings suggest that there are no 
substantial differences between the ML classifiers and MLC in this study. 
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4. Discussion 

This study demonstrates the advantage of using UAVs to map wetland species, especially to map 
small patches of invasive Phragmites in the OWC estuary, which would not be possible with coarse 
airborne and satellite images. This is well demonstrated by high OA for all sophisticated classifiers 
used in the study, and by relatively low errors of commission and omission for the given combination 
of feature layers. 

Based on careful selection of ROIs, robust sampling design using cross-validation, and careful 
parameterization of the classifiers, the findings clearly demonstrate that the selection of feature layers 
is critical. It was clearly demonstrated that the combination of the raw images (4sq) with feature layers 
NDVIOct, and CHM, derived from UAV, produces the highest overall accuracy (OA = 94.80%) and the 
lowest error of omission (OE = 1.59%) as well as relatively low error of commission (CE = 4.51%) for 
Phragmites when NN is used. It was observed, during the field work, that Phragmites spread faster in the 
estuary than other plant types and to improve the eradication of Phragmites, the lowest omission error 
is a critical requirement. Phragmites can be effectively removed by mowing, burning, and applying 
herbicides during the summer or fall [77]. The low error of omission for Phragmites resulted in the 
study would provide an advantage for estuary management to reach and apply eradicating measures 
to almost all the Phragmites patches in the OWC estuary. 
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4.1. Feature Selection 

The study demonstrates that too many features could decrease the classification accuracy, which 
agrees with the study of Price et al. [78]. The feature layers should be selected in such a way that 
they are most optimal in differentiating the classes [79], and this study has proposed to use NDVIOct 

and CHM to advance the classification of the UAV data. Although the main idea of the study was to 
concentrate on the August image, the integration of data acquired at different times, in late summer and 
in mid-fall, shows a clear advantage in this study [23]. A similar observation was reported by Lantz 
and Wang [80] and by several other studies where images at the end of the summer were successfully 
used to detect invasive Phragmites [33,81,82]. UAV data acquired in late spring (instead of late-growing 
season) might be equally useful. This would allow early detection and eradication of Phragmites and 
would help to overcome limitations observed in this study where the identification of hidden thin 
patches of Phragmites located under dense tree canopies was a challenge. Our efforts to collect UAV 
data over the study site in late spring were not successful due to frequent disturbances of the UAV 
flights by eagles nesting in the vicinity. 

The importance of using CHM to identify Phragmites, as it reduces both errors of omission 
and commission, is also clearly demonstrated, especially when CHM is combined with NDVIOct. 
Several other studies showed the advantages of CHM [83–85]. The reduction of errors of omission 
and commission for Phragmites was observed in the study of Samiappan et al. [33], where the author 
used the SVM classifier. On the other hand, the use of textural and PC measurements does not show a 
considerable reduction of errors of omission and commission for Phragmites in this study, which was 
not the case in several studies [14,81,86] but was the case in the study of Bradly [22]. A similar trend 
was observed in both pixel- and object-based classification methods. 

4.2. Sampling Design 

A good sampling design is vital to achieve high classification accuracy [81]. A previous study [78] 
also highlighted that the complexity of the study site, characteristics of the remote sensing data, image 
pre-processing methods, and classification approach dictated the sampling design. As described by 
Stehman [87], an ideal sampling design should be cost-effective, providing meaningful results to 
achieve the classification objectives and accommodate any sampling data errors. However, it is not 
often practical to create a perfect sample design due to the limits of resources and field accessibility [87]. 
Foody et al. [75] studied possible methods to reduce the required training sample size without losing 
classification accuracy, suggesting that it was possible to use a small dataset when the mechanism of 
the classifier was known, and when the objective of the study was to map a specific class. However, 
selecting a sufficient number of training samples becomes a challenge in classification studies if the 
landscape consists of a smaller number of patches of a particular plant type or if the landscape is 
complex [78]. Based on all these principles, after lengthy exploration of various sampling approaches, 
the results in this study suggest that the stratified random sampling design is necessary for a wetland 
setup such as OWC. The reduction of the number of training and validation samples for Phragmites and 
duckweed classes is not expected to affect classification accuracies as the stratified random sampling 
design decreases any possible negative effect in this case. 

Furthermore, Lucas et al. [88] claimed that a single pixel is the most suitable sample unit in a 
raster image for a pixel-based classification. However, if there are limitations such as poor accessibility, 
which was the case in this study, a sampling unit can consist of multiple pixels with an applied spatial 
smoothing technique as shown in this study [88]. A sample should include a sufficient number of 
basic classification sample units to represent all spectral properties of each class [69,77]. The grown 
ROIs include four or five pixels on average for each sampling point in this study covering higher 
spectral variability within each class. This approach increases the probability of classifying more pixels 
into the Phragmites class. In other words, the method can potentially reduce the errors of omission. 
The inclusion of more heterogeneous pixels in training and validation data is found to be promising to 
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improve the classification accuracy [89]. The cross-validation method was applied to compensate for 
the relatively low, but still sufficient, number of samples per class in this study. 

4.3. Object- vs. Pixel-Based Classification and Classification Algorithms 

Several studies concluded that object-based classification performs better than pixel-based 
classification because it creates uniform objects by merging similar pixels into one object [37,72,90]. 
Specifically, Lantz and Wang [79] emphasized that the object-based classification method resulted in 
higher accuracy over pixel-based classification to identify invasive Phragmites, while Bradley [23] and 
Pande-Chhetri et al. [37] reported the opposite results when identifying some other invasive plants. 
Interestingly, the current study results in a higher error of omission for the object-based methods, 
similar to the study of Pande-Chhetri et al. [37]. Although the best scale parameter for segmentation 
was carefully selected in this study (as explained above), the segmentation could be slightly erroneous 
to the extent where Phragmites pixels are confused with the pixels of cattails due to similar pixel values. 
This confusion could lead Phragmites pixels to be aggregated in the segments that include cattails. This 
situation was observed during the process of segmentation in this study, especially at the boundaries 
between cattails and Phragmites. Therefore, the process of segmentation was an initial step where 
some uncertainties could be generated suggesting that this step is critical as small variability could 
lead to unexpected results. Edge enhancement techniques could be used to overcome such errors at 
the boundaries of segments and improve classification accuracy [91], which was not considered in 
this study. 

Overall, no considerable advantages of ML classifiers over MLC are observed in this study. 
The similar overall accuracy, lower errors of commission, and the slightly higher errors of omission 
for MLC praise this parametric method as highly advanced. The findings show that the ML methods 
are not considerably better for the most optimal layer combination (4sq + NDVIOct + CHM), and that 
the tradeoffs between the ML classifiers and MLC should be considered given that the parameter 
optimization of SVM and NN classifiers need more time and effort compared to MLC. The disadvantage 
encountered with MLC in this study suggests that this classifier does not provide meaningful results 
when the number of bands increases to more than six. This was also demonstrated in the study of 
Cheeseman et al. [92]. In contrast, non-parametric classifiers (NN and SVM) are not considerably 
affected when the number of feature layers increases. High classification accuracies with the same 
classifiers were also achieved in the previous studies of Foody and Mathur [69], Ndehedehe et al. [65] 
and Qian et al. [68]. While some studies suggested that SVM outperformed NN in overall classification 
accuracy [66,89,93], the finding results in this study suggest that NN is exceptionally efficient when 
the minimum error of omission is required. Both high classification accuracy and the lowest error of 
omission for Phragmites are reached with a NN classifier restricted to one hidden layer [67]. Higher 
flexibility of the NN classifier due to the availability of a large number of different synaptic weights 
between each pair of nodes [62] has classified more pixels situated at the boundaries between Phragmites 
and cattail patches into the Phragmites, resulting in a lower error of omission. 

5. Conclusions 

High-resolution images acquired by UAVs are useful in mapping and evaluating wetland invasive 
plants because of image spatial resolution, ease of handling, and time and cost flexibility. This study 
used three pixel-based (NN, SVM, and traditional MLC) and two object-based (SVM and kNN) 
classifiers to detect Phragmites in the Old Woman Creek (OWC) Estuary in Ohio, USA. The UAV image 
acquired on 8 August 2017 was classified at three different levels of complexity using the proposed 
classifiers based on: (i) the four original bands (G, R, RE, NIR) (4sq); (ii) the sensitivity analysis where 
one feature layer at a time was added to 4sq, including information from the October image; and (iii) 
the combination of representative feature layers with the best performance added to 4sq. 

It was clearly demonstrated that the combination of the raw images (4sq) with feature layers 
NDVIOct and CHM, derived from UAV, produced the highest overall accuracy (OA = 94.80%) and the 
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lowest error of omission (OE = 1.59%) as well as a relatively low error of commission (CE = 4.51%) 
for Phragmites when NN is used. NN is recognized as the most effective approach in minimizing the 
error of omission. The findings suggest that the pixel-based classification was advantageous over the 
object-based approach to identify small patches of Phragmites as found in the OWC estuary. 

The study also included a detailed analysis of the sampling design and the number and distribution 
of ROIs, suggesting that stratified random sampling design with multi-pixels as a sampling unit was 
the most appropriate method to map small Phragmites patches. It was suggested that the sampling 
method combined with the cross-validation statistical approach is critical for any of the classifiers used 
in the study. Temporal variability of NDVI in combination with CHM are the two most important 
feature layers to reach the best performance of any of the classifiers. Any additional information, such 
as image texture and PC, was found not to be useful in this study, having a negative or neutral impact 
when combined with other layers in the process of classification. The findings show that the ML 
methods are not considerably better than MLC for the most optimal layer combination (4sq + NDVIOct 

+ CHM), and that the tradeoffs between the ML classifiers and MLC should be considered in future 
studies. The study provides a method to detect invasive Phragmites with high accuracy in a small area 
using a limited number of samples. 
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36. Komárek, J.; Klouček, T.; Prošek, J. The potential of unmanned aerial systems: A tool towards precision 
classification of hard-to-distinguish vegetation types? Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 9–19. [CrossRef] 

37. Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland 
vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. 
[CrossRef] 

38. Puliti, S.; Ørka, H.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. 
Remote Sens. 2015, 7, 9632–9654. [CrossRef] 

39. Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. 
[CrossRef] 

40. Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. 
[CrossRef] 

41. Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A photogrammetric workflow for the creation of a 
forest canopy height model from small unmanned aerial system imagery. Forests 2013, 4, 922–944. [CrossRef] 

42. Klarer, D.M.; Millie, D.F. Aquatic macrophytes and algae at Old Woman Creek estuary and other Great Lakes 
coastal wetlands. J. Great Lakes Res. 1992, 18, 622–633. [CrossRef] 

43. Whyte, R.S.; Trexel-Kroll, D.; Klarer, D.M.; Shields, R.; Francko, D.A. The invasion and spread of Phragmites 
australis during a period of low water in a Lake Erie coastal wetland. J. Coast. Res. 2008, 111–120. [CrossRef] 

44. Herdendorf, C.E.; Klarer, D.M.; Herdendorf, R.C. Ecology. In The Ecology of Old Woman Creek: An Estuarine 
and Watershed Profile; Ohio Department of Natural Resources, Division of Natural Areas and Preserves: 
Columbus, OH, USA, 2006; p. 1. 

45. ArcGIS base Maps. Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 
AeroGRID, IGN, HERE, Garmin, © OpenStreetMap Contributors, and the GIS User Community. Available 
online: https://www.arcgis.com/home/group.html?id=702026e41f6641fb85da88efe79dc166#overview (accessed 
on 2 February 2019). 

46. Lopez, F.; Klarer, D.; Elmer, H.; Keefe, A.; Zoest, P.V.; Pasterak, G. Estuaries: Critical National Resources. 
In Old Woman Creek National Estuarine Research Reserve Management Plan 2011–2016; Ohio Department of 
Natural Resources, Division of Wildlife: Huron, OH, USA, 2011. 

47. Aday, D.D. The Presence of and invasive macrophyte (Phragmites australis) Does not Influence Juvenile Fish 
Habitat Use in a Freshwater Estuary. J. Freshw. Ecol. 2007, 22, 535–537. [CrossRef] 

48. eBee SQ The Advanced Agriculture Drone. Available online: https://www.sensefly.com/drone/ebee-sq-
agriculture-drone/ (accessed on 9 June 2017). 

49. eMotion. Available online: https://www.sensefly.com/software/emotion/ (accessed on 13 June 2017). 
50. Full Range/High Resolution Field Portable Spectroradiometers for Remote Sensing. Available online: https: 

//spectralevolution.com/products/hardware/field-portable-spectroradiometers-for-remote-sensing/ (accessed 
on 10 May 2017). 

51. Pix4Dmapper. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software 
(accessed on 23 May 2017). 

52. Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. 
Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. 
Ecol. Appl. 1995, 5, 28–41. [CrossRef] 

53. Barnes, E.; Clarke, T.; Richards, S.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; 
Thompson, T. Coincident detection of crop water stress, nitrogen status and canopy density using ground 
based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, 
Bloomington, MN, USA, 16–19 July 2000. 

54. Han, Y.; Li, M.; Li, D. Vegetation index analysis of multi-source remote sensing data in coal mine wasteland. 
N. Z. J. Agric. Res. 2007, 50, 1243–1248. [CrossRef] 

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://spectralevolution.com/products/hardware/field-portable-spectroradiometers-for-remote-sensing
https://www.sensefly.com/software/emotion
https://www.sensefly.com/drone/ebee-sq
https://www.arcgis.com/home/group.html?id=702026e41f6641fb85da88efe79dc166#overview


Remote Sens. 2019, 11, 1380 22 of 23 

55. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. 
[CrossRef] 

56. Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of 
vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [CrossRef] 

57. Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. 
J. Sens. 2017, 2017, 1–17. [CrossRef] 

58. Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for 
remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [CrossRef] 

59. Chavez, P.S., Jr. Comparison of spatial variability in visible and near-infrared spectral images. Photogramm. 
Eng. Remote Sens. 1992, 58, 957–964. 

60. Principal Components Analysis. Available online: https://www.harrisgeospatial.com/docs/ 
PrincipalComponentAnalysis.html (accessed on 25 March 2018). 

61. Yunfei, B.; Guoping, L.; Chunxiang, C.; Xiaowen, L.; Zhang, H.; Qisheng, H.; Linyan, B.; Chaoyi, C. 
Classification of lidar point cloud and generation of dtm from lidar height and intensity data in forested area. 
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 313–318. 

62. eCognition Developer 9. Available online: http://www.ecognition.com/suite/ecognition-developer (accessed 
on 9 November 2017). 

63. eCognition User Community. Available online: http://community.ecognition.com/home/when-you-have-
landsat-data-do-not-perform-radiometric-calibration-toa.-is-it-true/view?searchterm=multiply+100# 
1440684094 (accessed on 25 February 2018). 

64. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: 
An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef] 

65. Ndehedehe, C.; Ekpa, A.; Simeon, O.; Nse, O. Understanding the neural network technique for classification 
of remote sensing data sets. N. Y. Sci. J. 2013, 6, 26–33. 

66. Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. 
Int. J. Remote Sens. 2008, 29, 617–663. [CrossRef] 

67. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with 
selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG 
imagery. Remote Sens. Environ. 2012, 118, 259–272. [CrossRef] 

68. Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover 
classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [CrossRef] 

69. Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training 
data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [CrossRef] 

70. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. 
Remote Sens. 2011, 66, 247–259. [CrossRef] 

71. Rupasinghe, P.A.; Simic Milas, A.; Arend, K.; Simonson, M.A.; Mayer, C.; Mackey, S. Classification of 
shoreline vegetation in the Western Basin of Lake Erie using airborne hyperspectral imager HSI2, Pleiades 
and UAV data. Int. J. Remote Sens. 2018, 40, 3008–3028. [CrossRef] 

72. Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping 
savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [CrossRef] 

73. Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment: Fundamental 
principles. Remote Sens. Environ. 1998, 64, 331–344. [CrossRef] 

74. Region of Interest (ROI) Tool. Available online: https://www.harrisgeospatial.com/docs/RegionOfInterestTool. 
html (accessed on 18 February 2018). 

75. Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the 
classification of a specific class. Remote Sens. Environ. 2006, 104, 1–14. [CrossRef] 

76. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. 
Informatica 2007, 2007, 249–268. 

77. Güsewell, S. Management of Phragmites australis in swiss fen meadows by mowing in early summer. 
Wetl. Ecol. Manag. 2003, 11, 433–445. [CrossRef] 

78. Price, K.P.; Guo, X.; Stiles, J.M. Optimal Landsat TM band combinations and vegetation indices for 
discrimination of six grassland types in eastern Kansas. Int. J. Remote Sens. 2002, 23, 5031–5042. [CrossRef] 

https://www.harrisgeospatial.com/docs/RegionOfInterestTool
http://community.ecognition.com/home/when-you-have
http://www.ecognition.com/suite/ecognition-developer
https://www.harrisgeospatial.com/docs


Remote Sens. 2019, 11, 1380 23 of 23 

79. Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification 
performance. Int. J. Remote Sens. 2007, 28, 823–870. [CrossRef] 

80. Lantz, N.J.; Wang, J. Object-based classification of Worldview-2 imagery for mapping invasive common reed, 
Phragmites australis. Can. J. Remote Sens. 2013, 39, 328–340. [CrossRef] 

81. Laba, M.; Blair, B.; Downs, R.; Monger, B.; Philpot, W.; Smith, S.; Sullivan, P.; Baveye, P.C. Use of textural 
measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve 
with IKONOS satellite imagery. Remote Sens. Environ. 2010, 114, 876–886. [CrossRef] 

82. Gilmore, M.S.; Wilson, E.H.; Barrett, N.; Civco, D.L.; Prisloe, S.; Hurd, J.D.; Chadwick, C. Integrating 
multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River 
tidal marsh. Remote Sens. Environ. 2008, 112, 4048–4060. [CrossRef] 

83. de Castro, A.; Torres-Sánchez, J.; Peña, J.; Jiménez-Brenes, F.; Csillik, O.; López-Granados, F. An automatic 
random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. 
Remote Sens. 2018, 10, 285. [CrossRef] 

84. Martin, F.-M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using single-and multi-date 
UAV and satellite imagery to accurately monitor invasive knotweed species. Remote Sens. 2018, 10, 1662. 
[CrossRef] 

85. Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in 
the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [CrossRef] 

86. Liu, J. A Combined Method for Vegetation Classification Based on Visible Bands from UAV Images: A 
Case Study for Invasive Wild Parsnip Plants. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 
February 2018. 

87. Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. 
[CrossRef] 

88. Lucas, I.; Janssen, F.; van der Wel, F.J. Accuracy assessment of satellite derived landcover data: A review. 
Photogramm. Eng. Remote Sens. 1994, 60, 419–426. 

89. Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for 
the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 
78–87. [CrossRef] 

90. Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation 
classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 
2006, 72, 799–811. [CrossRef] 

91. Ali, M.; Clausi, D. Using the Canny edge detector for feature extraction and enhancement of remote sensing 
images. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Waterloo, 
ON, Canada, 9–13 July 2001; pp. 2298–2300. 

92. Cheeseman, P.C.; Self, M.; Kelly, J.; Taylor, W.; Freeman, D.; Stutz, J.C. Bayesian Classification. In Proceedings 
of the AAAI, Moffett Field, CA, USA, 21 August 1988; pp. 607–611. 

93. Omer, G.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E. Performance of support vector machines and 
artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku forest, 
South Africa. IEEE J. Sel. Top. Appl. Earth. Obs. Remote. Sens. 2015, 8, 4825–4840. [CrossRef] 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

http://creativecommons.org/licenses/by/4.0

	Structure Bookmarks

