CS 6630: SPATIAL AND MULTIDIMENSIONAL DATABASES

Semester Hours:	3.0
Coordinator	Ray Kresman
Text	Spatial databases- a tour
Authors:	Shekhar and Chawla
Year	2003

Contact Hours: 3

SPECIFIC COURSE INFORMATION

Catalog Description:

Introduction to advanced database structures and large datasets. Efficient data structures and related algorithms for spatial, streaming and multi-dimensional and semi-structured datasets. Employs concepts from databases, algorithms, computer graphics and computational geometry. Prerequisites: CS 5620 or permission of instructor.

Course type: ELECTIVE

SPECIFIC COURSE GOALS

- I am able to store, retrieve and manipulate multidimensional data using advanced data structures such as MX-quad tree, BBD-tree, R-tree, and others.
- I am able to formulate spatial queries that permit efficient data.
- I am able to distinguish between various spatial distance metrics.
- I am able to explain the mechanics of certain algorithms for similarity searching.
- I am able to use advanced SQL operations to query data warehouses.
- I am able to explain the nature of streaming data and algorithms for certain problems.
- I am able to critically evaluate a research literature in the realm of multidimensional, spatial or streaming data.

LIST OF TOPICS COVERED

- 1. Introduction
 - o Large datasets
 - Spatial data & GIS

- o Streaming data
- 2. Graph Theory
 - o Elementary graphs
 - Computational geometry
- 3. Multidimensional Datasets
 - Transactional data and relational schemas
 - o Dimensional models
 - Snowflake schemas
 - Data warehousing & SQL
- 4. Spatial Datasets
 - Representation
 - Access methods
 - o Trees: R-tree, Kd-tree, quad-tree, etc.
 - Performance tradeoffs
- 5. Data Storage and Manipulation
 - Spatial Object types
 - Spatial queries & operations
 - Similarity search/methods
 - o Spatial algebra
- 6. Streaming Data
 - Sample problem: sampling, cardinality/moments estimation
 - Clustering & space filling cures
 - Approximation algorithms

7. Performance

- Spatial indices
- Clustering & space filling curves
- Data quality and metrics
- 8. Mining
 - o Association rules
 - Continuous space and spatial co-location
 - Spatial autocorrelation