CS6150: RELIABLE COMPUTING

Course Description

Techniques for writing reliable software including n-version programming, fault-tolerant data structures and formal proofs of correctness. Rollback and recovery methods. Fault-tolerant hardware and methods of hardware error detection and correction. Prerequisites: Admission to MS in CS program, or consent of department, plus CS 3350 or equivalent.

Course Syllabus

- **Fault-Tolerant Hardware**
 - Tandem Computer Architecture(*)
 - Stratus computer architecture(*)
 - The (4,2) computer architecture
 - Hardware error detection & correction through coding(*)
 - Redundant array of inexpensive disks (RAID)(*)

- **Fault-Tolerant Software**
 - Formal proofs of correctness(*)
 - Axiomatic semantics and proof rules
 - weakest precondition
 - strongest post condition
 - invariants and assertions
 - Formal specification - an overview
 - VDM or Z
 - Algebraic specification and data types
 - Roll back and recovery, check pointing(*)
 - Software safety
 - N-version techniques(*)
 - Fault tolerant data structures and scrubbing(*)
 - Use of error detection codes in software
 - Data integrity in distributed transactions
 - Validation protocols for transactions
 - Distributed check pointing

- **Estimation of Mean Time Between Failures (MTBF)**
 - Numerical aspects of software testing
 - Domain testing
 - Effect of redundant components
 - Effect of scrubbing
 - Standards for software fault-tolerance

(*)These topics are core material to be covered every time the course is taught.