CS 3080 : OPERATING SYSTEMS

Contact Hours: 3

Semester Hours:	3.0
Coordinator:	Hassan Rajaei
Text:	Operating System Concepts
Author(s):	SILBERSHATZ GALVIN, GAGNE
Year:	2008

SPECIFIC COURSE INFORMATION

Catalog Description:

Features of modern multiprocessing operating systems. Threads and processes; resource management; scheduling, concurrency, and communication; virtual memory management; secondary storage management. Students cannot get credit for both CS 3080 and CS 3270. Prerequisite: Grade of C or better in CS 2020 and CS 2170 or CS 2190.

Course type: **REQUIRED**

SPECIFIC COURSE GOALS

- I can describe process scheduling algorithms, and compare their performance.
- I can use language primitives to manage threads and processes.
- I can describe concurrency issues and compare approaches to solving them.
- I can implement pseudo-code & actual code to solve certain synchronization problems.
- I can describe real and virtual memory management algorithms.
- I can derive the mapping between virtual and real addresses.
- I can describe certain scheduling algorithms for device management.

COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions
- CS 2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline

• CS 6 Apply computer science theory and software development fundamentals to produce computing-based solutions

LIST OF TOPICS COVERED

- Overview (~ 13%, 2.0 weeks)
 - OS history and features
 - Process, user and kernel threads
 - o Security
 - Introduction to Unix/Linux (reintroduced and utilized throughout the course)
- Scheduling (~ 20%, 3 weeks)
 - Process and thread management
 - Scheduling algorithms
 - Performance tradeoffs
 - o Examples
- Concurrency (~ 20%, 3 weeks)
 - Race condition
 - o Mutual exclusion algorithms for processes and threads
 - o Deadlock
 - o Examples
- Communication (~ 15%, 2.25 weeks)
 - Shared memory
 - Pipes and other paradigms
 - o Examples
- Memory Management (~ 15%, 2.25 weeks)
 - o Real and virtual memory
 - Address Translation
 - Paging algorithms
 - Performance and examples
- Device Management (~ 10%, 1.5 weeks)
 - Device interaction
 - o Buffer management

- Disk schedulers
- Platform Specifics (~ 7%, 1 week)
 - \circ Windows
 - o Unix

COMPUTER SECURITY TOPICS

Faculty who recently offered CS 3080 have discussed and identified a list of topics related to computer security in this course. Below is a list for instructors to incorporate. (*) indicates topics that are mandatory.

Security Topic	Description	Textbook	Estimated
		Reference ¹	Class
			Hours
Isolation	Virtual Machines. Benefits of a virtual	Chapter 16	1
	machine. Include discussion of how virtual		
	machines provide a level of isolation from		
	the guest to the host OS.		
*Isolation	Virtual Memory. Discussing how virtual	Chapter 9	1
	memory works, including how kernel		
	processes are allocated separately and		
	isolated, from user processes.		
*Protection	User vs. kernel mode; SVC-protect CPU,	Chapter 2	5
	I/O and computer memory; ring structure.	Chapter 14	
	Notions of protection domains and access		
	matrices are applied in OS to control		
	access to resources. Specifically cover		
	notion of <i>principle of least privilege</i> .		
*Security	Discussion of security threats and attacks.	Chapter 15	2
	Basics of encryption, authentication, and		
	hashing techniques. Topics including port		
	scanning, denial of service, and worms.		
	Authentication of users (passwords,		
	biometrics, etc.).		
*Concurrency	Threading, threading issues such as thread	Chapter 4	3-6
	safety. Synchronization techniques.	Chapter 5	

¹Silberschatz, 8th Edition.