Categorical Data Analysis Using SAS and Stata

Hsueh-Sheng Wu
Center for Family and Demographic Research
May 23, 2016

Outline

- Why do we need to learn categorical data analyses?
- A summary of different categorical data analyses
 - Analyses of contingency tables
 - Regression models
 - Logistic regression
 - Ordered logistic regression
 - Multinomial logistic regression
- Stata commands
- SAS commands
- Interpreting the results
- Predicted probability
- Conclusions

Why Do We Need to Learn Categorical Data Analysis?

- Four measurement levels
 - Nominal (e.g., gender, race)
 - Ordinal (e.g., attitude toward cohabitation)
 - Interval (e.g., temperature)
 - Ratio (e.g., income)
- Categorical variables are those measured at nominal and ordinal levels.
- Interval or ratio variables can be transformed into nominal or ordinal variables, but not the other way around.

What Is Special about Categorical Variable?

- The distribution of a categorical variable is described by its frequency and proportion rather than by its mean and variance.
- Statistical methods (i.e., t-test, correlation, OLS regression)
 designed for continuous dependent variables are not
 adequate for analyzing categorical dependent variables.
- The decision on how to analyze categorical variables is often based on:
 - The measurement level and number of categories in dependent variables
 - The measurement level and number of categories in independent variables
 - Sample size
 - Number of independent variables

Different Models for Categorical Dependent Variables

Categorical models address three types of questions:

- Examination of contingency tables
 - Proportions
 - Relative risks
 - Odds ratio
- How the characteristics of individuals affect the choice
 - Binary logistic regression
 - Ordered logistic regression
 - Multinomial logistic regression

Analyzing a Two-way Contingency Table

Analyzing a 2x2 table

Table. Gender and Employment					
Employed Unemployed					
Male	200	200			
Female	200	400			

Table. Gender and Employment					
Employed Unemployed					
Male	ρ_{1}	1-ρ 1			
Female	ρ_2	1-ρ ₂			

Difference of Two Proportions = $\pi_1 - \pi_2 \approx \rho_1 - \rho_2$

$$SE = \sqrt{\frac{\rho_1(1-\rho_1)}{n_1} + \frac{\rho_2(1-\rho_2)}{n_2}}$$

Analyzing a Two-way Contingency Table (Cont.)

Relative Risk =
$$\frac{\pi_1}{\pi_2}$$

Odds Ratio

Odds Ratio =
$$\frac{\text{Odds 1}}{\text{Odds 2}}$$

= $\frac{\pi_1}{\pi_2} = \frac{\pi_{11}}{\pi_{21}} = \frac{\pi_{11}}{\pi_{21}} = \frac{\pi_{11} \cdot \pi_{22}}{\pi_{12} \cdot \pi_{21}}$
 $SE = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$

Example

Data

$$P1 = 200/400 = 0.5$$

 $P2 = 200/600 = 0.33$

Difference of two proportions

$$P1 - P2 = 0.17$$

- Relative risk

$$P1/P2 = 1.51$$

Odds Ratio

$$(200*400)/(200*200) = 2$$

Analyzing a Three-way Contingency Table

 A three-way contingency table can be viewed as multiple two-way contingency tables created at different levels of a third variable.

Example:

Table. Relations among Country, Gender, and Employment						
	County A Country B					
	Employed	Unemploye	Employed	Unemployed		
Male	180	120	20	80		
Female	120	80	80	320		

Example

Difference of proportion

Country A: (180/300) – (120/200)=0

Country B: (20/100) -(80/320)=0

- Relative risk

Country A: (180/300)/(120/200)=0.6/0.6=1

Country B: (20/100) -(80/320)=0.2/0.2=1

Odds Ratio

Country A: (180*80)/(120*120)=1

Country B: (20*320)*(80*80)=1

Models for Examining How Characteristics of Individuals Affect Choices

Logistic Regression

$$\log(\frac{p_1}{p_2}) = \log(\frac{p_1}{1-p_1}) = \alpha + \beta \chi$$

$$\pi(\chi) = \frac{\exp(\alpha + \beta \chi)}{1 + \exp(\alpha + \beta \chi)} = \frac{e^{\alpha + \beta \chi}}{1 + e^{\alpha + \beta \chi}}$$

Ordered Logistic Regression

$$p(Y \le j) = \pi_1 + ... + \pi_j, j = 1,..., J$$

$$\log it [p(Y \le j)] = \log \left[\frac{p(Y \le j)}{1 - p(Y \le j)}\right] = \log \left[\frac{\pi_1 + \dots + \pi_{j,}}{\pi_{j+1} + \dots + \pi_{J,}}\right], j = 1, \dots, J$$

Models for Examining How Characteristics of Individuals Affect Choices (Cont.)

Multinomial Logistic Regression

$$\log(\frac{p_{j}}{p_{J}}) = \alpha_{j} + \beta_{j} \chi, j = 1,..., J - 1$$

$$\frac{p_{a}}{p_{a}} = \log(\frac{p_{a}}{p_{b}}) = \log(\frac{p_{a}}{p_{J}}) - \log(\frac{p_{b}}{p_{J}})$$

$$= (\alpha + \beta + \beta + \gamma) - (\alpha + \beta + \gamma)$$

$$= (\alpha_a + \beta_a \chi) - (\alpha_b + \beta_b \chi)$$

$$= (\alpha_{\alpha} - \alpha_{b}) + (\beta_{a} - \beta_{b})\chi$$

Relations among These Three Models

- Ordered logistic regression and multinomial logistic regression are an extension of logistic regression.
- Both ordered and multinomial logistic regression can be treated as models simultaneously estimating a series of logistic regression.
- Ordered logistic regression assumes different intercepts, but the same slope for different categories, while multinomial logistic regression assumes different intercept and slope parameters for different categories.

A List of Variables in the Data

variable name	variable label	Label Value	Label Label
		57101310 -	
aid	ID	99719978	
a.a		337 2337 6	
married	Marital Status	0	Not married
		1	Married
educ	Education	1	Less than High School
		2	High School
		3	Some college
		4	colleges or more
union	Union Status	0	single
		1	cohabiting
		2	married
female	Female	0	Male
		1	Female
age	Age		24-33
agesq	Age squared		576-1089
femaleage	Interaction term of female and age		0-33

Data for Logistic Regression, Ordered Logistic Regression, and Multinomial Logistic Regression

	aid	married	educ	union	female	age	agesq	femaleage
1	57101310	1	2	2	1	31	961	31
2	57103869	0	1	0	0	32	1024	0
3	57109625	0	1	0	0	27	729	0
4	57111071	0	3	0	0	27	729	0
5	57113943	0	3	1	0	29	841	0
6	57117542	0	1	0	0	28	784	0
7	57118381	1	3	2	1	25	625	25
8	57118943	1	4	2	1	29	841	29
9	57120005	0	4	0	0	26	676	0
10	57120046	1	3	2	0	31	961	0
11	57120371	1	2	2	1	31	961	31
12	57121404	1	4	2	1	28	784	28
13	57121476	0	2	0	1	27	729	27
14	57127241	0	3	1	1	26	676	26
15	57129567	0	3	1	0	27	729	0
16	57131432	1	3	2	0	29	841	0
17	57131909	0	3	1	0	26	676	0
18	57133772	0	3	0	1	26	676	26
19	57134457	0	3	0	1	28	784	28
20	57134967	0	1	1	1	26	676	26

Stata Commands

Logistic Regression

logit married female age femaleage
logit married female age femaleage, or

Ordered Logistic Regression
ologit educ female age femaleage
ologit educ female age femaleage, or

Multinomial Logistic Regression mlogit union female age femaleage, base(0)

SAS Commands

Logistic Regression

```
Proc Logistic data = in.annotated_3_2;
Format married marriedf. educ educf.;
Model married = educ female age femaleage;
run;
```

SAS Commands

Ordered Logistic Regression

```
Proc Logistic data = in.annotated descending;
Format educ educf. female femalef.;
Model educ = female age femaleage;
run;
```

```
PROC QLIM data = in.annotated;

MODEL educ = female age

femaleage/DISCRETE (DIST=LOGISTIC);

RUN;
```


SAS and Stata Commands

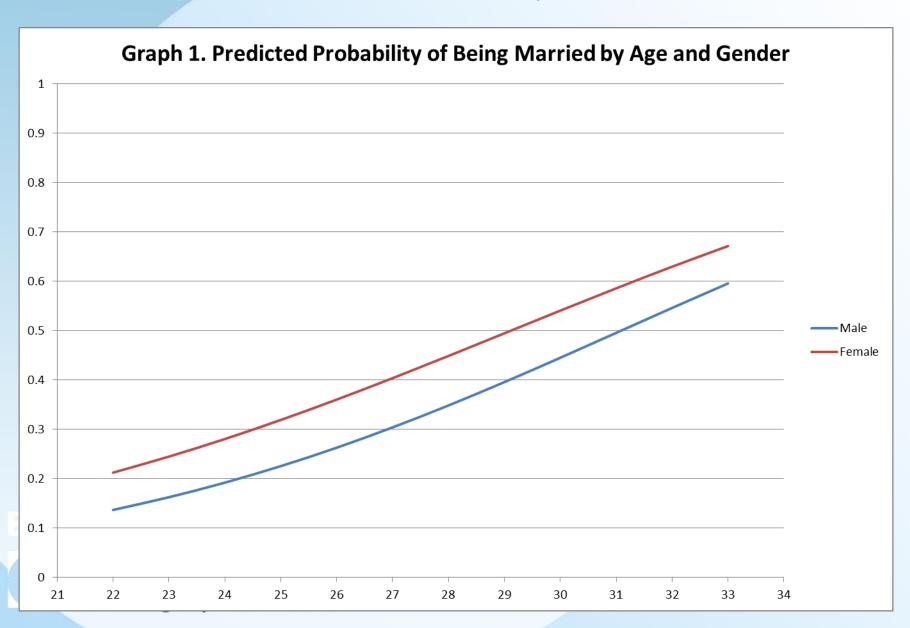
Multinomial Logistic Regression

```
proc logistic data = in.annotated_3_2;
  class union (ref = "0");
  model union = female age femaleage/ link =
glogit;
  run;
```

Interpreting the Results

- The sample size
- The reference category
- The regression coefficients
- The odds ratio

Predicted Probability


- Predicted probability is useful to describe the results
- Odds = Exp(the sum of coefficients)
- Predicted Probability = Odds/(1+Odds)
- You can present predicted probability with graphs

Predicted Probability (continued)

Intercept	Fen	nale		Age	Age*	Female	Sum of coefficents	Odds Ratio	Predicted Probability
coefficent	value	coefficent	value	coefficent	value	coefficent			
-6.295917	0	0.9380865	22	0.2025471	0	-0.0185092	-1.8398808	0.158836358	0.137065391
-6.295917	0	0.9380865	23	0.2025471	0	-0.0185092	-1.6373337	0.194497941	0.162828193
-6.295917	0	0.9380865	24	0.2025471	0	-0.0185092	-1.4347866	0.238166183	0.192353972
-6.295917	0	0.9380865	25	0.2025471	0	-0.0185092	-1.2322395	0.291638721	0.225789701
-6.295917	0	0.9380865	26	0.2025471	0	-0.0185092	-1.0296924	0.357116793	0.263143743
-6.295917	0	0.9380865	27	0.2025471	0	-0.0185092	-0.8271453	0.437295855	0.30424902
-6.295917	0	0.9380865	28	0.2025471	0	-0.0185092	-0.6245982	0.53547654	0.348736386
-6.295917	0	0.9380865	29	0.2025471	0	-0.0185092	-0.4220511	0.655700532	0.396026044
-6.295917	0	0.9380865	30	0.2025471	0	-0.0185092	-0.219504	0.802916946	0.44534328
-6.295917	0	0.9380865	31	0.2025471	0	-0.0185092	-0.0169569	0.983186059	0.495760877
-6.295917	0	0.9380865	32	0.2025471	0	-0.0185092	0.1855902	1.203928789	0.546264832
-6.295917	0	0.9380865	33	0.2025471	0	-0.0185092	0.3881373	1.474232182	0.595834212
-6.295917	1	0.9380865	22	0.2025471	22	-0.0185092	-1.3089967	0.270090903	0.212654781
-6.295917	1	0.9380865	23	0.2025471	23	-0.0185092	-1.1249588	0.324665843	0.245092636
-6.295917	1	0.9380865	24	0.2025471	24	-0.0185092	-0.9409209	0.390268272	0.280714363
-6.295917	1	0.9380865	25	0.2025471	25	-0.0185092	-0.756883	0.469126417	0.319323383
-6.295917	1	0.9380865	26	0.2025471	26	-0.0185092	-0.5728451	0.563918749	0.360580592
-6.295917	1	0.9380865	27	0.2025471	27	-0.0185092	-0.3888072	0.67786495	0.404004476
-6.295917	1	0.9380865	28	0.2025471	28	-0.0185092	-0.2047693	0.814835277	0.448985805
-6.295917	1	0.9380865	29	0.2025471	29	-0.0185092	-0.0207314	0.979482018	0.494817336
-6.295917	1	0.9380865	30	0.2025471	30	-0.0185092	0.1633065	1.177397507	0.540736133
-6.295917	1	0.9380865	31	0.2025471	31	-0.0185092	0.3473444	1.415304072	0.585973455
-6.295917	1	0.9380865	32	0.2025471	32	-0.0185092	0.5313823	1.701282367	0.629805454
-6.295917 -6.295917									
Den	III y¹ and	0.9380865	33	0.2025471	33	-0.0185092	0.7154202	2.04504583	0.671597718

Predicted Probability (continued)

Conclusions

- If you have categorical dependent variables, you need to choose adequate methods to analyze them.
- You need to choose the regression models that fit your data and research questions.
- If you have event counts (e.g., the number of accidents), you need to use other models such as Poisson regression, Log-linear model, or Negative binomial regression for analyses.
- For additional help with categorical data analysis, feel free to contact me at wuh@bgsu.edu and 372-3119.


```
******
* Logistic Regression
. logit married female age femaleage
Iteration 0:
              log likelihood = -3486.5653
Iteration 1: log likelihood = -3394.8573
Iteration 2: log likelihood = -3394.6262
Iteration 3: log likelihood = -3394.6262
Logistic regression
                                                     Number of obs =
                                                    LR chi2(3) = 183.88
Prob > chi2 = 0.0000
Pseudo R2 = 0.0264
Log likelihood = -3394.6262
                                                     Pseudo R2
                                                                            0.0264
______
                                           z P > |z| [95% Conf. Interval]
     married |
                   Coef. Std. Err.
    femaleage | -.0185092 .0326631 -0.57 0.571 -.0825278
    . logit married female age femaleage, or
              log likelihood = -3486.5653
Iteration 0:
              log likelihood = -3394.8573
Iteration 1:
Iteration 2: log likelihood = -3394.6262
Iteration 3: log likelihood = -3394.6262
                                                    Number of obs =
LR chi2(3) =
Prob > chi2 =
Logistic regression
                                                                          183.88
                                                                          0.0000
Log likelihood = -3394.6262
                                                    Pseudo R2
     married | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
    female | 2.555088 2.387494 1.00 0.315 .4092948 15.95054

      age |
      1.224518
      .0297512
      8.34
      0.000
      1.167573

      femaleage |
      .981661
      .0320641
      -0.57
      0.571
      .9207858

      _cons |
      .0018438
      .0012886
      -9.01
      0.000
      .0004686

                                                                         1.28424
                                                                          .0072544
*******
* Ordered Logistic Regression
. ologit educ female age femaleage
Iteration 0: log likelihood = -6252.7947
Iteration 1: log likelihood = -6206.1378
Iteration 2: log likelihood = -6206.0689
Iteration 3: log likelihood = -6206.0689
                                                    Number of obs = 5113
LR chi2(3) = 93.45
Ordered logistic regression
                                                     Prob > chi2 = 0.0000
Log likelihood = -6206.0689
                                                    Pseudo R2
       educ | Coef. Std. Err.
                                           z P>|z| [95% Conf. Interval]

    female | 1.877126
    .8172138
    2.30
    0.022
    .275416

    age | -.010898
    .0208886
    -0.52
    0.602
    -.0518389

    femaleage | -.0494917
    .0286535
    -1.73
    0.084
    -.1056516

                                                                        3.478835
       /cut1 | -2.54953 .5995614
                                                            -3.724648 -1.374411
                                                                       -.0411226
       /cut2 | -1.213573 .5982002
                                                            -2.386024
       /cut3 |
                .6857857
                            .5979509
                                                            -.4861766
```

```
. ologit educ female age femaleage, or
Iteration 0: log likelihood = -6252.7947
Iteration 1: log likelihood = -6206.1378
Iteration 2: log likelihood = -6206.0689
Iteration 3: log likelihood = -6206.0689
                                                                   Number of obs =
Ordered logistic regression
                                                                                                  5113
                                                                  LR chi2(3) =
                                                                   Prob > chi2 = 0.0000
Log likelihood = -6206.0689
                                                                   Pseudo R2
                                                                                                0.0075
         educ | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

    female |
    6.534694
    5.340242
    2.30
    0.022
    1.317079
    32.42193

    age |
    .9891612
    .0206622
    -0.52
    0.602
    .9494818
    1.030499

    femaleage |
    .9517131
    .0272699
    -1.73
    0.084
    .8997381
    1.00669

-3.724648 -1.374411
        /cut1 | -2.54953 .5995614
        /cut2 | -1.213573 .5982002
/cut3 | .6857857 .5979509
                                                                            -2.386024 -.0411226
-.4861766 1.857748
                                                                            -.4861766
**********
* Multinomial Logistic Regression
. mlogit union female age femaleage, base(0)
Iteration 0: log likelihood = -5376.261
Iteration 1: log likelihood = -5282.5618
Iteration 2: log likelihood = -5282.3053
Iteration 3: log likelihood = -5282.3053
Multinomial logistic regression
                                                                   Number of obs =
                                                                  LR chi2(6) = 187.91
                                                                                              0.0000
                                                                   Prob > chi2 =
Log likelihood = -5282.3053
                                                                   Pseudo R2
       union | Coef. Std. Err. z P>|z| [95% Conf. Interval]
single | (base outcome)
cohabiting |

      female | .8175782
      1.228829
      0.67
      0.506
      -1.590882
      3.226038

      age | .0030635
      .030982
      0.10
      0.921
      -.0576601
      .0637871

      emaleage | -.0239002
      .0435381
      -0.55
      0.583
      -.1092333
      .0614329

      _cons | -.8159613
      .8787378
      -0.93
      0.353
      -2.538256
      .9063331

    femaleage |

    female
    1.22508
    1.024113
    1.20
    0.232
    -.7821444

    age
    .2035444
    .026309
    7.74
    0.000
    .1519797

    emaleage
    -.026943
    .0358749
    -0.75
    0.453
    -.0972566

                                                                                           3.232305
    femaleage
                                                                                              .0433705
       _cons | -5.930568 .7551726 -7.85 0.000 -7.410679 -4.450457
```

The SAS System

The LOGISTIC Procedure

^{***} Logistic Regression***

Model Information

Data Set IN.ANNOTATED_3_2 annotated_3_2 dataset written by Stat/Transfer Ver.

11.2.2106.0521

Response Variable married Current marital status

Number of Response 2

Levels

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 5114

Number of Observations Used 5114

Response Profile						
Ordered married Tota Value Frequence						
1	married	2172				
2	not married	2942				

Probability modeled is married='married'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	6975.131	6797.252				
SC	6981.670	6823.411				
-2 Log L	6973.131	6789.252				

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	183.8783	3	<.0001				
Score	180.7636	3	<.0001				
Wald	175.3151	3	<.0001				

A	Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate		Wald Chi-Square	Pr > ChiSq				
Intercept	1	-6.2959	0.6989	81.1563	<.0001				
female	1	0.9381	0.9344	1.0079	0.3154				
age	1	0.2025	0.0243	69.4981	<.0001				
femaleage	1	-0.0185	0.0327	0.3211	0.5709				

Odds Ratio Estimates							
Effect	Point Estimate		Wald nce Limits				
female	2.555	0.409	15.951				
age	1.225	1.168	1.284				
femaleage	0.982	0.921	1.047				

Association of Predicted Probabilities and Observed Responses						
Percent Concordant	56.8	Somers' D	0.220			
Percent Discordant	34.8	Gamma	0.240			
Percent Tied	8.4	Tau-a	0.107			
Pairs	6390024	c	0.610			

The SAS System

*** Ordered Logistic Regression, Using "Proc Logistic" Procedure ***

The LOGISTIC Procedure

Model Information

Data Set IN.ANNOTATED_3_2 annotated_3_2 dataset written by Stat/Transfer Ver.

11.2.2106.0521

Response Variable educ Education

Number of Response 4

Levels

Model cumulative logit

Optimization Technique Fisher's scoring

Number of Observations Read 5114

Number of Observations Used 5113

Response Profile						
Ordered Value	educ	Total Frequency				
1	colleges or more	1668				
2	Some college	2211				
3	Less than High School	399				
4	High School	835				

Probabilities modeled are cumulated over the lower Ordered Values.

Note: 1 observation was deleted due to missing values for the response or explanatory variables.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

20.3374 6 0.0024

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	12511.589	12419.182					
SC	12531.208	12458.419					
-2 Log L	12505.589	12407.182					

Testing Global Null Hypothesis: BETA=0								
Test Chi-Square DF Pr > ChiSq								
Likelihood Ratio	98.4077	3	<.0001					
Score	97.9548	3	<.0001					
Wald	97.1834	3	<.0001					

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	colleges or more	1	-0.5802	0.5974	0.9433	0.3314
Intercept	Some college	1	1.3187	0.5977	4.8672	0.0274
Intercept	Less than High School	1	1.8133	0.5981	9.1931	0.0024
female		1	2.0949	0.8184	6.5518	0.0105
age		1	-0.0146	0.0209	0.4922	0.4830
femaleage		1	-0.0572	0.0287	3.9675	0.0464

Odds Ratio Estimates							
Effect	Point Estimate 95% Wald Confidence Limi						
female	8.124	1.634	40.405				
age	0.985	0.946	1.027				
femaleage	0.944	0.893	0.999				

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	52.3 Somers' D	0.120			
Percent Discordant	40.3 Gamma	0.130			

Association of Predicted Probabilities and Observed Responses					
Percent Tied	7.5	Tau-a	0.081		
Pairs	8807799	c	0.560		

The SAS System

*** Ordered Logistic Regression, Using "Proc QLIM" Procedure ***

The QLIM Procedure

Discrete Response Profile of educ					
Index Value Total Frequency					
1	1	399			
2	2	835			
3	3	2211			
4	4	1668			

Model Fit Summary					
Number of Endogenous Variables	1				
Endogenous Variable	educ				
Number of Observations	5113				
Missing Values	1				
Log Likelihood	-6206				
Maximum Absolute Gradient	0.0002955				
Number of Iterations 1					
Optimization Method	Quasi-Newton				
AIC	12424				
Schwarz Criterion	12463				

Goodness-of-Fit Measures						
Measure Value Formula						
Likelihood Ratio (R)	93.451	2*(LogL - LogL0)				
Upper Bound of R (U)	12506	- 2 * LogL0				
Aldrich-Nelson 0.0179		R/(R+N)				
Cragg-Uhler 1	0.0181	$1 - \exp(-R/N)$				
Cragg-Uhler 2	$(1-\exp(-R/N)) / (1-\exp(-U/N))$					

Goodness-of-Fit Measures						
Measure Value Formula						
Estrella	0.0182	1 - (1-R/U)^(U/N)				
Adjusted Estrella	0.0159	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)				
McFadden's LRI	0.0075	R / U				
Veall-Zimmermann	0.0253	(R * (U+N)) / (U * (R+N))				
McKelvey-Zavoina	0.0596					
N = # of observations,	K = # of	regressors				

Algorithm converged.

Parameter Estimates								
Parameter	DF	Estimate	Standard Error	t Value	$\begin{array}{c} Approx \\ Pr > t \end{array}$			
Intercept	1	2.549530	0.599559	4.25	<.0001			
female	1	1.877126	0.817215	2.30	0.0216			
age	1	-0.010898	0.020889	-0.52	0.6019			
femaleage	1	-0.049492	0.028654	-1.73	0.0841			
_Limit2	1	1.335956	0.045318	29.48	<.0001			
_Limit3	1	3.235315	0.055188	58.62	<.0001			

The SAS System

The LOGISTIC Procedure

Model Information

Data Set IN.ANNOTATED_3_2 annotated_3_2 dataset written by Stat/Transfer Ver.

11.2.2106.0521

Response Variable union Union Status

Number of Response 3

Levels

Model generalized logit

Optimization Technique Newton-Raphson

Number of Observations Read 5114

Number of Observations Used 5114

Response Profile					
Ordered Value	union	Total Frequency			
1	0	1936			
2	1	1006			
3	2	2172			

Logits modeled use union=0 as the reference category.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	10756.522	10580.611			
SC	10769.601	10632.929			
-2 Log L	10752.522	10564.611			

^{***} Multinomial Logistic Regression ***

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	187.9113	6	<.0001		
Score	185.1487	6	<.0001		
Wald	179.5235	6	<.0001		

Type 3 Analysis of Effects						
Effect	DF	Wald	Pr > ChiSq			
Chi-Square						
female	2	1.4589	0.4822			
age	2	69.4399	<.0001			
femaleage	2	0.6271	0.7308			

Analysis of Maximum Likelihood Estimates						
Parameter	union	DF	Estimate		Wald Chi-Square	Pr > ChiSq
Intercept	1	1	-0.8139	0.8787	0.8579	0.3543
Intercept	2	1	-5.9266	0.7551	61.5971	<.0001
female	1	1	0.8154	1.2288	0.4403	0.5070
female	2	1	1.2211	1.0241	1.4217	0.2331
age	1	1	0.00300	0.0310	0.0094	0.9229
age	2	1	0.2034	0.0263	59.7839	<.0001
femaleage	1	1	-0.0238	0.0435	0.2995	0.5842
femaleage	2	1	-0.0268	0.0359	0.5585	0.4549

Odds Ratio Estimates					
Effect	union	Point Estimate	95% Wald Confidence Limits		
female	1	2.260	0.203	25.124	
female	2	3.391	0.456	25.236	
age	1	1.003	0.944	1.066	
age	2	1.226	1.164	1.290	
femaleage	1	0.976	0.897	1.063	
femaleage	2	0.974	0.907	1.044	