Demographic Contours of Divorce: What We Know and What We Need to Know

Jay Teachman
Western Washington University

Bowling Green State University
September 28, 2009
Figure 1. Divorces per 1000 Married Women Age 15+ by Year with Fitted 4th Degree Polynomial: 1870-2000

Divorces per 1000 Married Women Age 15+

Source: Jacobson (1959); Preston and McDonald (1979)
Figure 2. Divorces per 1000 Married Women Age 15 and Over by Marital Cohort with Fitted 3rd Degree Polynomial: 1870-2000

\[y = -3E-07x^3 + 0.0015x^2 - 2.9689x + 1916.1 \]

Source: Preston and McDonald (1979); Schoen and Standish (2001)
THE WAY MY MIND WORKS:

- $Y_{it} = a + b_1 X_{it} + b_2 P_t + b_3 U_{it} + b_4 V_t + b_5 (X_{it} \times P_t) + b_6 (U_{it} \times P_t) + b_7 (X_{it} \times V_t) + e_{it}$
- Where Y_{it} is the risk of divorce at time t for person i
- X_{it} is a measured characteristic of person (or couple) i at time t
- P_t is a measured period or contextual factor acting on all persons at time t
- U_{it} is an unmeasured characteristic of person (or couple) i at time t
- V_{it} is an unmeasured period or contextual factor acting on all persons at time t
- The b terms are coefficients and e_{it} is the always present error
WHAT MOST RESEARCH ESTIMATES:

- $Y_{it} = a + b_{1}X_{it} + e^{*}_{it}$
- Thus, only the characteristics of person i are estimated
- For demographers, the biggies are things like age at marriage, duration of marriage, education, employment, income, premarital fertility, premarital cohabitation, parental divorce, children, race/ethnicity, and various measures of partner homogamy
- Usually justified by using some formulation of a utility maximization or exchange perspective
- Sometimes measures of attitudes and marital satisfaction are included (to include more non-demographic measures)
- e^{*}_{it} includes everything that isn’t measured in X_{it}
A SLIGHT EXPANSION:

- \(Y_{it} = a + b_1X_{it} + b_2P_t + e_{it} \)
- Most often \(P_t \) is included to capture the rapid change in divorce rates across historical time
- Usually just a set of dummy variables (marriage cohort or historical period) yielding a simple fixed-effects model
- Again, \(e_{it} \) represents all that is not in the model
Again, for the most part P_t has included only measures of historical time or marriage cohort.

Yet, very little attention has been paid to the components of historical time or cohort that generate changes across time.

In addition, context can be much more inclusive than measures of time.

Thus, what is the correct context? Which characteristics of which context should we be measuring?

Scott South’s work on contextual effects (marriage alternatives/neighborhood distress) on divorce or the old SIME-DIME research.

Recent work on military service and the marriages of black men point to the importance of context other than time.
EXPANDING THE MODEL FURTHER

- \(Y_{it} = a + b_1X_{it} + b_2P_t + b_3U_{it} + e_{it} \)
- What are some of the unmeasured individual-level covariates of divorce?
- I suggest four possibilities (among many):
 - Indicators of ‘proper’ marital match (given the growing importance of companiate marriages), perhaps via measures of courtship process
 - Biosocial factors (including personality characteristics), particularly as they interact with context
 - Migration histories, again as they interact with context (the M factor)
 - Health indicators (and other exogenous ‘surprises’)
HOT OFF THE PRESS FINDINGS RE HEALTH:

- Using data from the NLSY-79
- Health limitations of husbands affect the risk of divorce but not health limitations of wives
- Limitations in kind of work affect health, but not limitations in amount of work
- For black men, higher education attenuates the effect of health limitations
- For white men, higher education exacerbates the effect of health limitations
<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whites N = 2469</td>
<td>Blacks N = 1508</td>
<td>Whites N = 2437</td>
<td>Blacks N = 1505</td>
</tr>
<tr>
<td>Limitation in Amount of Work</td>
<td>0.137</td>
<td>0.190</td>
<td>-0.308</td>
<td>-0.539</td>
</tr>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td></td>
<td>Limitation in Kind of Work</td>
<td>0.491*</td>
<td>-3.141**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Education*Limitation in Amount of Work</td>
<td>-0.005</td>
<td>0.020</td>
<td>0.084</td>
<td>0.007</td>
</tr>
<tr>
<td>Education*Limitation in Kind of Work</td>
<td>0.285**</td>
<td>-0.324**</td>
<td>-0.111</td>
<td>-0.094</td>
</tr>
<tr>
<td>Active Duty Army</td>
<td>-0.058</td>
<td>-0.046</td>
<td>-0.660**</td>
<td>-0.657**</td>
</tr>
<tr>
<td>Active Duty Other Military Service</td>
<td>-0.123</td>
<td>-0.121</td>
<td>0.336*</td>
<td>0.338*</td>
</tr>
<tr>
<td>Veteran of Active Duty</td>
<td>0.100</td>
<td>0.098</td>
<td>0.373**</td>
<td>0.376**</td>
</tr>
<tr>
<td>Reserve Duty</td>
<td>0.217</td>
<td>0.223</td>
<td>-0.318</td>
<td>-0.315</td>
</tr>
<tr>
<td>Veteran of Reserve Duty</td>
<td>0.307*</td>
<td>0.307*</td>
<td>-0.060</td>
<td>-0.059</td>
</tr>
<tr>
<td>Log of Average Income</td>
<td>-0.056**</td>
<td>-0.055**</td>
<td>-0.090**</td>
<td>-0.089**</td>
</tr>
<tr>
<td>Log of Average Income of Spouse</td>
<td>-0.021</td>
<td>-0.021</td>
<td>-0.006</td>
<td>-0.006</td>
</tr>
<tr>
<td>Earn 40% or Less of Family Income</td>
<td>-0.133</td>
<td>-0.134</td>
<td>-0.443**</td>
<td>-0.435**</td>
</tr>
<tr>
<td>Earn 60% or More of Family Income</td>
<td>0.251*</td>
<td>0.249*</td>
<td>0.218</td>
<td>0.215</td>
</tr>
<tr>
<td>Age at Marriage</td>
<td>-0.045**</td>
<td>-0.044**</td>
<td>-0.025**</td>
<td>-0.247**</td>
</tr>
<tr>
<td>AFQT Score</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.006**</td>
<td>-0.006**</td>
</tr>
<tr>
<td>Years Married</td>
<td>0.021</td>
<td>0.020</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Years Married Squared</td>
<td>-0.003*</td>
<td>-0.003*</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td>Catholic</td>
<td>-0.065</td>
<td>-0.069</td>
<td>-0.284**</td>
<td>-0.281**</td>
</tr>
<tr>
<td>No Religion</td>
<td>0.167</td>
<td>0.162</td>
<td>-0.235</td>
<td>-0.230</td>
</tr>
<tr>
<td>Other Religion</td>
<td>0.146</td>
<td>0.138</td>
<td>-0.025</td>
<td>-0.024</td>
</tr>
<tr>
<td>Mother’s Education</td>
<td>0.028</td>
<td>0.030</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>Lived With Both Biological Parents</td>
<td>-0.203**</td>
<td>-0.203**</td>
<td>-0.109</td>
<td>-0.107</td>
</tr>
<tr>
<td>Birth After 1959</td>
<td>0.123</td>
<td>0.125</td>
<td>0.049</td>
<td>0.050</td>
</tr>
<tr>
<td>Cohabited Before Marriage</td>
<td>0.247**</td>
<td>0.242**</td>
<td>0.037</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Table 2 Multivariate Results for Discrete-time Event History Models of the Log Odds of Marital Dissolution: NLSY-79 Samples of Men and Women by Race
<table>
<thead>
<tr>
<th></th>
<th>Number of Siblings</th>
<th>Number of Own Children in the Household</th>
<th>Enrolled in School</th>
<th>Highest Grade of Schooling Obtained</th>
<th>Intercept</th>
<th>Log Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.044**</td>
<td>-0.195**</td>
<td>-0.335*</td>
<td>-0.115**</td>
<td>0.117</td>
<td>-3170.3</td>
</tr>
<tr>
<td></td>
<td>-0.042**</td>
<td>-0.195**</td>
<td>-0.342*</td>
<td>-0.121**</td>
<td>0.164</td>
<td>-3166.7</td>
</tr>
<tr>
<td></td>
<td>-0.049**</td>
<td>-0.092**</td>
<td>0.005</td>
<td>-0.034</td>
<td>-0.358</td>
<td>-2447.9</td>
</tr>
<tr>
<td></td>
<td>-0.049**</td>
<td>-0.092**</td>
<td>0.009</td>
<td>-0.030</td>
<td>-0.413</td>
<td>-2446.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.095**</td>
<td>0.281**</td>
<td>-0.076**</td>
<td>0.130</td>
<td>-3421.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.095**</td>
<td>0.280**</td>
<td>-0.076**</td>
<td>0.132</td>
<td>-3420.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.952**</td>
<td>0.112</td>
<td>-0.069**</td>
<td>-0.903**</td>
<td>-2595.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.071</td>
<td>-0.787**</td>
<td>-2595.5</td>
</tr>
</tbody>
</table>
Figure 1: Probability of Marital Dissolution by Marital Duration, Health Limitation and Level of Education: White Men

- No limitation by schooling
- Limitations in amount by schooling
- Limitations in kind by schooling

Marital Duration:
- 5
- 10
- 15
- 20
Figure 2 Probability of Marital Dissolution by Marital Duration, Health Limitation and Level of Education: Black Men
INCLUDING MORE TERMS IN THE MODEL:

- \[Y_{it} = a + b_1X_{it} + b_2P_t + b_3U_{it} + b_4(X_{it} \times P_t) + e^_\perp_{it} \]
- The idea here is that the effects of individual-level predictors may change across historical time.
- My 2002 paper found that this was not the case for most of the usual suspects.
- However, we know that the effect of income has changed over time (over a longer period of time).
- More recent evidence suggests that the effect of premarital cohabitation has changed, as well as the effect of wives’ education.
- I also suspect that there should be growing importance of making a ‘proper’ match.
- We need to identify the element of each historical period or context that leads to a change in the effect of a covariate.
EVEN MORE OF THE MODEL:

- \(Y_{it} = a + b_1X_{it} + b_2P_t + b_3U_{it} + b_4(X_{it} \times P_t) + b_5(U_{it} \times P_t) + e^+_{it} \)
- It may seem unusual to suggest an interaction between an unmeasured individual-level characteristic and context.
- Yet the growing evidence for the heritability of divorce is an example of this phenomenon (context sets the stage to allow certain characteristics to express themselves).
Y_{it} = a + b_1X_{it} + b_2P_t + b_3U_{it} + b_4(X_{it} \times P_t) + b_5(U_{it} \times P_t) + b_6V_t + e'_{it}

Here we add unmeasured components of periods or other contexts

Should include set of indicators of the environment within which marriages are lived, including neighborhoods, occupations, workplaces, schools, marriage markets, churches, and kin/friend networks

I include gender as a context. Are there his and hers divorces? See Kalmijn and Poortman.

Cultural groupings may also be important (Hispanics, recent immigrants, regional/national/policy groupings)
FINALLY!

- $Y_{it} = a + b_1 X_{it} + b_2 P_t + b_3 U_{it} + b_4 (X_{it} \times P_t) + b_5 (U_{it} \times P_t) + b_6 V_t + b_7 (V_t \times X_{it}) + e_{it}$

- The interaction between unmeasured contexts and individual-level covariates

- For example does the effect of the known covariates of divorce operate similarly for native and immigrant groups?

- The importance of marriage markets for divorce (spouse alternatives may allow a covariate to ‘express’ itself)
SO WHAT DO WE KNOW:

- We know a fair amount concerning the micro-demographic covariates of divorce.
- This knowledge is highly focused in time and place.
- We know that there has been substantial historical changes in the risk of divorce that we cannot explain and that there are unexplained variations in divorce by race, culture, etc.
WHAT WE NEED TO KNOW:

- Why do historical changes in divorce occur?
- What leads to changes in the effect of covariates of divorce over time and what are these changes?
- What are the effects of context on divorce and what can explain these contextual effects?
- What are the undiscovered, evolving covariates of divorce (at multiple levels of measurement)?
Thank You !