CS 6070: ARCHITECTURE OF COMPUTERS

Semester Hours: 3.0 Contact Hours: 3

Coordinator: Jong Kwan "Jake" Lee

Text: TBD

Author: TBD

Year: TBD

SPECIFIC COURSE INFORMATION

Catalog Description:

Architectures of modern computing systems. Techniques for high-speed computation: pipelining, vector processing, array processors. General purpose parallel architectures: SIMD, MIMD and data flow systems and their memory organizations and processor communication. Prerequisites: Full Admission to MS in CS program or consent of department.

Course type: **ELECTIVE**

SPECIFIC COURSE GOALS

- I understand the quantitative principles (e.g. taking advantage of parallelism, exploring principle of locality, losing on the common case) of computer design.
- I understand the pipelining works on a modern CPU.
- I can explore instruction level parallelisms (e.g. loop unrolling, scheduling, branch prediction) in RISC/MIPS instruction sets.
- I understand how vector processing works.
- I understand cache structure and its relevant concepts (e.g. cache performance evaluation, replacement policies).

LIST OF TOPICS COVERED

- Introduction to Technology and Architecture*
 - o Impact of technology on computer architecture
 - o Evolution of computer architecture
- Associative Memory (CAM)
 - o Hardware concepts of CAM
 - o Lewin's O(n) sorting algorithm
- Cache Memory*
 - o Basic cache structure
 - Set associative caches

- o Evaluating Cache performances
- o Determining Cache parameters
- Replacement Policies
- o Implementing LRU replacement policies
- o Detail example of a cache memory system
- Virtual Memory*
 - o Basic virtual memory structure
 - o Translation lookaside buffer
 - o Segment tables
 - o Replacement algorithms
 - o Detail example of a virtual memory system
- Pipeline Techniques*
 - o Principles of Pipelined computers
 - o Evaluating performance of pipelined computers
 - o Reservation tables and collision vectors
 - o Maximizing pipeline performance
 - o Conditional branches in pipelined computers
 - o Internal forwarding and deferred instructions
- Reconfigurable computer architectures
 - o Reconfigurable busses
 - o Addition in time O(1)
- Multiprocessors
 - o Flynn's classification of multiprocessors
 - Vector computers*
 - Numerical algorithms on a vector computer
 - Pipelining in vector computers
 - Examples of vector computers
 - Multiprocessor interconnections*
 - o General purpose multiprocessors, e.g. RP-1, HEP
 - Data flow computers
- RISC Computers
 - o Pipelined structure of the CPU
 - o RISC characteristics
 - o Detail example of a RISC computer

^{*}This topic is core material to be covered every time the course is taught.