CS 5620: DATABASE MANAGEMENT SYSTEMS

Semester Hours: 3.0 Contact Hours: 3

Coordinator: Abbas Heydarnoori

Text: Database Management Systems. 3rd Edition

Author(s): RAGHU RAMAKRISHNAN AND JOHANNES GEHRKE

Year: 2002

SPECIFIC COURSE INFORMATION

Catalog Description:

Semantic models for conceptual and logical design of databases. Detailed study of relational systems: design, dependency and normal forms. Use of interactive and embedded query language. Overview of topics such as database connectivity, security and object-oriented systems. Prerequisite: Admission to MS in CS program, or consent of department.

Course type: **ELECTIVE**

SPECIFIC COURSE GOALS

- I can describe the functions and advantages of a DBMS.
- I can classify the three popular data models by level of abstraction.
- I can explain 1NF, 2NF, 3NF, BCNF, and 4NF.
- I can apply the normalization process to create tables.
- I can use SQL effectively to create queries, views, and subqueries.
- I can use SQL commands in C++.
- I can use JDBC and SQL commands in Java.
- I can describe the type of relationships between entities.
- I can design entity-relationship diagrams to represent simple database application scenarios.
- I can use transactions, locks, and simple recovery schemes.
- I can form simple queries in relational algebra and calculus.
- I can analyze relevant research and communicate my findings.

LIST OF TOPICS COVERED

- Background (*)
 - File processing vs DBMS
 - Model overview
 - Storage techniques
- Relational DBMS (*)
 - Dependency and Normal forms
 - o SQL Oracle
 - o Embedded SQL Oracle
 - Performance tradeoffs
- Database design (*)
 - Design goals
 - User views
 - o Entity relationship model
 - o Design examples
- Conventional models
 - o Network model & CODASYL DBTG submodel
 - Hierarchical model
- Microcomputer dbms
- Object oriented database (*)
 - o Multimedia
 - Managing objects
 - o Postgres free object database
- Advanced topics
 - Multidatabase systems
 - Context of corporate systems
 - Cooperative computing
 - Local & global schema
 - Schema integration
 - Security and recovery (*)

- o Enhanced ER models
 - EER to relational mapping
 - Knowledge representation
- o Client server architectures (*)
 - Query processing
 - Data replication
 - Update control
- (*) This topic is core material to be covered every time the course is taught.