CS 5390: NETWORK ARCHITECTURE AND APPLICATIONS

Semester Hours: 3.0 Contact Hours: 3

Coordinator: Ray Kresman

Text: Computer Networking: A Top-Down Approach

Author(s): KUROS AND ROSS

Year: 2017, 7th edition

SPECIFIC COURSE INFORMATION

Catalog Description:

Layered architectures and protocols. TCP/IP protocol suite. Client-server communication paradigm. Application architectures such as push and pull technologies, web services, cloud and microservices, multimedia. Scalability and performance. Prerequisite: Full Admission to MS in CS program or consent of department. Credit cannot be earned for both CS 4390 or CS 5390.

Course type: **REQUIRED**

SPECIFIC COURSE GOALS

- Justify the need for, and describe the working of, layered protocol suites, such as TCP/IP.
- Develop client-server applications using TCP/IP.
- Assemble/disassemble packets and translate address as it traverses networks.
- Solve sample problems using popular routing protocols.
- Motivate the need for and summarize the details of service architectures, such as web services and micro-services.
- Describe the details, including payload types and synchronization of multimedia application protocols.
- Explain and distinguish the various service types supported by internet applications for example, best effort, streaming.
- Construct the working of certain types of congestion control mechanisms.
- I can analyze relevant research and communicate my findings.

LIST OF TOPICS COVERED

- Layered Protocol Architectures (~ 5%)
 - o TCP/IP and OSI
- TCP/IP (~ 10%)
 - o LAN and other components
 - Service view
 - o TCP vs UDP, and more
 - Packet formats
- Client-server Applications (~ 15%)
 - Thread vs Process
 - o Sockets, RPC, etc
 - Scalability
- Transport and Routing (~ 15%)
 - o Reliable vs. unreliable transfer
 - Congestion control
 - Routing protocols
- Service Architectures (~ 15%)
 - Web services
 - Microservices
 - o P2P and others
- Multimedia (~ 10%)
 - o Real-time/streaming, VoIP
 - Quality of Service
- Wireless Communication (~ 10%)
 - o Wi-Fi
 - Cell networks
- Media and Performance (~ 10%)
 - Signal strength
 - Compression and error detection
 - o Delay, loss, throughput

T-	. (T.) . T 1 (. 100()
• Emer	ging/Future Trends (~ 10%)
0	Parallel and distributed computing
0	Security
0	Others