CS 2020: INTERMEDIATE PROGRAMMING

Semester Hours: 3.0 Contact Hours: 3

Coordinator: Ronald Conway

Text: Intermediate Programming with zyBooks & zyLabs

Author(s): VAHID & LYSECKY

Year: 2022

SPECIFIC COURSE INFORMATION

Catalog Description:

Introduction to object-oriented programming techniques. Constructors, destructors, operator overloading. Inheritance and polymorphism. Elementary data structures including linked lists. Dynamic storage allocation concepts. Prerequisite: Corequisite of MATH 1260 or MATH 1280 or MATH 1300 (Precalculus) or higher and grade of C or better in CS 2010. Approved for distance education.

Course type: **REQUIRED**

SPECIFIC COURSE GOALS

- I can understand and can implement search and sorting algorithms.
- I can implement programs using arrays and linked lists.
- I can use dynamic memory techniques in implementing programming design.
- I can use fundamental object-oriented programming techniques, including encapsulation, inheritance, polymorphism, and virtual functions.

COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions
- CS 2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline
- CS 6 Apply computer science theory and software development fundamentals to produce computing-based solutions

SOFTWARE ENGINEERING STUDENT OUTCOMES ADDRESSED BY THIS COURSE

• SE 1 An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

LIST OF TOPICS COVERED

- Struct and Classes (2 weeks = 14%)
 - o Grouping data: struct
 - Structs and functions
 - o Objects: Introduction
 - ADTs
 - Preconditions, Postconditions, and Class Invariants
 - Using a class
 - o Mutators, accessors, and private helpers
 - Separate files for classes
- More Classes (new, delete) (2.5 week = 18%)
 - o Initialization and constructors
 - Classes and vectors/classes
 - Unit testing (classes)
 - Constructor overloading
 - Operator overloading
- Pointer (2 weeks = 14%)
 - Pointer basics
 - o Pointer to Arrays
 - o Pointer Arithmetic
 - o Operators: new, delete, and ->
 - o Memory regions: Heap/Stack
- Vectors/Dynamic arrays (2 weeks = 14%)
 - o Iterating through vectors
 - o Multiple vectors
 - Vector resize

- Vector push_back
- Linked Lists (2.5 weeks = 18%)
 - o A first linked list
 - o Memory leaks
 - Destructors
 - o Rule of three
- Introduction to inheritance and polymorphism (2 weeks = 14%)
 - Derived classes
 - o Access by members of derived classes
 - o Overriding member functions
 - o Polymorphism and virtual member functions
 - Abstract classes
 - o Is-a versus has-a relationships
 - o UML
- Recursion (direct/linear & binary) (1 week = 7%)
 - o Recursive functions
 - o Recursive algorithm: Search
 - o Creating a recursive function
 - Stack overflow
- Function templates (.5 weeks = 5%)
 - o Function templates
 - o Class templates

COMPUTER SECURITY TOPICS

Faculty who recently offered CS 2020 have discussed and identified a list of topics related to computer security in this course. Below is a list for instructors to incorporate. (*) indicates topics that are mandatory.

Security Topic	Description	Textbook	Estimated
		Reference ¹	Class
			Hours
*Bounds Checking	Pointer manipulations, vector access – index	Module 10	<1
	and pointers	Module 13	
*Principle of Least	Default private struct – default public; other	Module 11	<1
Privilege	access modifiers. Class access modifiers		
*Obfuscation	Obscures intended meaning; for example,	Module 12	<1
	operator overloading		
*Access Control	Inheritance, polymorphism, lack of security	Module 15	1
	with friendship		

¹ zyBooks: CS2020: Intermediate Programming.