Introduction to Event History Analysis

Hsueh-Sheng Wu
 CFDR Workshop Series
 February 21, 2022

Outline

- What is event history analysis?
- Event history analysis steps
- Create data for event history analysis
- Data for different analyses
- The dependent variable in Life Table analysis and Cox Regression
- Reshape data for Discrete-time analysis
- Analyze data
- Life Table
- Cox Regression without time-varying variables
- Discrete-time without time-varying variables
- Discrete-time with time-varying variables
- Conclusion

What is event history analysis?

- Event history analysis is a "time to event" analysis, that is, we follow subjects over time and observe at which point in time they experience the event of interest
- Event history analysis can establish the causal relation between independent variables and the dependent variable because of a clear temporal order of independent variables and the dependent variable.
- The data used for event history analysis can include all information from respondents that drop out of the study later.
- Both SAS and Stata can be used to conduct event history analysis, but Stata allows you to better take into account complex survey design

What is event history analysis (continued)?

Examples:

Brown, Bulanda, \& Lee (2012) Transitions Into And Out Of Cohabitation In Later Life. Journal Of Marriage And Family, 74, 774793

Kuhl, Warner, \& Wilczak (2012) Adolescent Violent Victimization And Precocious Union Formation, Criminology,50,1089-1127

Longmore, Manning, \& Giordano (2001) Preadolescent Parenting Strategies And Teens' Dating And Sexual Initiation: A Longitudinal Analysis. Journal Of Marriage And Family, 322-335

Manning \& Cohen (2012) Premarital Cohabitation And Marital b. Dissolution: An Examination Of Recent Marriages ,Journal Of

就Fhnariage And Family, 74, 377-387
s.Demographic Research

What is event history analysis (continued)?

Figure 1. Different types of censoring

$\begin{array}{l}\text { End of the study } \\ \text { (e.g., Wave III) }\end{array}$

What is event history analysis (continued)

- A is fully censored on the left
- B is partially censored on the left
- C is complete
- D is censored on the right within the study period
- E is censored on the right
- F is completely censored on the right
- G represents a duration that is left and right censored
bamily and
部Demographic Research

STEPS for event history analysis

- What is the research question?
- Locate and select variables
- Establish analytic sample
- Recode variables
- Create timing data for event history analysis
- Life Tables and Cox Regression
- Discrete-time analysis
- Describe and Analyze data
- Life Table
- Cox regression
- Discrete-time

An example of conducting event history analysis

- Research Question:

What factors are associated with the timing of first marriage?

- Variables:
- Dependent variable: Timing of first marriage
- Predictors:
- Gender (male/female),
- Race (black/non-black)
- Age (continuous)
- Expectation of marriage at Wave I (continuous)
- High school graduation (yes/no)
- Weight variables:
- Region: (West, Midwest, South, and Northeast)
- Schools (Range 1 to 371)
- Individual weights (Range 16.3183 to 6649.3618)
- An indicator of whether adolescents are included in the analytic sample - sub_pop (yes/no)

Analytic Sample

- The Sample Size:
- 20, 745 adolescents participated in Wave 1 interview
- 15, 170 adolescents provided information on marriages at Wave III interview
- 14,253 adolescents has valid information on the timing of first marriage and weight variables at Wave I
- 2,855 have married for the first time before Wave III interview
- Respondents who had first marriage before Wave III interview but were excluded from the analytic sample
- 54 married before Wave I interview
- 2 married before Age 14
- 34 had first marriage, but did not have graduation time
- The analytic sample
- Adolescents with valid responses to marital status, all the predictor variables, and weight variables. The final $\mathrm{N}=13,995$.

Create data for event history analysis

- Three different data formats for different analysis

Table 1. Data for analyses not involving the examination the timing of first marriage

Name	Married	Female	High School Graduation
Tim	0	0	1
Sara	1	1	0
Tom	0	0	0
Sherry	1	1	1
Note:			
Married: $1=$ Married; $0=$ Unmarried			
Female: $1=$ Female; $0=$ Male			
High School Graduation: $1=$ Graduated from High aschool; $0=$ Did not graduate from High School raphic' Research			

Table 2. Data for Life Table and Cox Regression, and the timing of independent and dependent variables are included in the data file.

Name	Married	Time (in months from W1) to getting married or being censored (reaching the W3 having never married)	Female	High School Graduation	Time (in months from W1 interview) to graduating from high school or being censored (i.e., reaching the W3 having not
Tim	0	3	0	1	3
Sara	1	3	1	0	3
Tom	0	5	0	0	5
Sherry	1	5	1	1	4
Note:					
Married: 1 = Married; $0=$ Unmarried					
Female: $1=$ Female; $0=$ Male					
High School Graduation: 1 = Graduated from High School; $0=$ Did not graduate from High School					

Table 3. Data for Discrete Time Analysis, and the timining of independent and dependent variables are transformed into person-time data

Name	Month	Married	Female	High School Graduation
Tim	1	0	0	0
	2	0	0	0
	3	0	0	1
Tara	1	0	1	0
	2	0	1	0
	3	1	1	0
	1	0	0	0
	2	0	0	0
Sherry	3	0	0	0
	5	0	0	0
	1	0	1	0
	2	0	1	0
	3	1	1	0
	5	0	1	0
		0	0	1

Note:
Married: 1 = Married; $0=$ Unmarried
Female: $1=$ Female; $0=$ Male
High School Graduation: 1 = Graduated from High School; $0=$

Dependent Variable in Life Table and Cox Regression

- Create the date indicator for:

```
    - Timing of first marriage
    gen marriage_t1 = ym(form_y1, form_m1)
    label variable marriage_t1 "century month"
    for getting married for the first time"
    - Wave I interview
    gen interview_t1 = ym(iyear, imonth)
    label variable interview_t1 "time for t1 interview"
```

 - Wave III interview
 gen interview_t3 = ym(iyear3, imonth3)
 label variable interview_t3 "time for t3 interview"
 - Calculate the number of months to first marriage since Wave I interview
gen time1 = marriage_t1 - interview_t1 if (marriage_t1 ~=. \& interview_t1~=.)
label variable time1 "time for those got married"
- Calculate the number of months between Wave I and Wave III interview gen time2 $=$ interview_t3-interview_t1 label variable time2 "time for those did not get married"
- Calculate the number of months to first marriage or censoring gen time =.
label variable time "timing of the first marriage"
replace time $=$ timel if time1 ~=. \& mar1 ==1
replace time $=$ time2 if marl $==0$
replace time $=$. if timel <0
喑Family and

- Use the data created for Cox Regression

```
use "t:\temp\cox.dta", clear
```

Table 4. Data for Cox regression

Name	mar1	time	female	gra	gra_tm
Tim	0	3	0	1	3
Sara	1	3	1	0	3
Tom	0	5	0	0	5
Sherry	1	5	1	1	4

Noted: \quad mar1: $1=$ married for the first time, $0=$ did not marry for the first time
time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female
gra: 1 = Graduated from High School, $0=$ Did not gra_tm: the number of months to high school

Table 5. Data after using Stata "expand" command

Name	mar1	time	female	gra	gra_tm
Tim	0	3	0	1	3
Tim	0	3	0	1	3
Tim	0	3	0	1	3
Sara	1	3	1	0	3
Sara	1	3	1	0	3
Sara	1	3	1	0	3
Tom	0	5	0	0	5
Tom	0	5	0	0	5
Tom	0	5	0	0	5
Tom	0	5	0	0	5
Tom	0	5	0	0	5
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4
Sherry	1	5	1	1	4

Noted:
mar1: $1=$ married for the first time, $0=$ did not time: the number of months to the first marriage since Wave I interview or having never married Female: $0=$ Male, $1=$ Female gra: 1 = Graduated from High School, $0=$ Did not

- Sort the data by the ID variable. Generate a variable "month" to indicate which month to which the observation now belongs.
sort aid
by aid: gen month=_n

Table 6. Data after the "month" variable was generated

Name	mar1	time	female	gra	gra_tm	month
Tim	0	3	0	1	3	1
Tim	0	3	0	1	3	2
Tim	0	3	0	1	3	3
Sara	1	3	1	0	3	1
Sara	1	3	1	0	3	2
Sara	1	3	1	0	3	3
Tom	0	5	0	0	5	1
Tom	0	5	0	0	5	2
Tom	0	5	0	0	5	3
Tom	0	5	0	0	5	4
Tom	0	5	0	0	5	5
Sherry	1	5	1	1	4	1
Sherry	1	5	1	1	4	2
Sherry	1	5	1	1	4	3
Sherry	1	5	1	1	4	4
Sherry	1	5	1	1	4	5
Noted: mar1: $1=$ married for the first time, $0=$ did not marry for the first time time: the number of months to the first marriage since Wave I interview or having never married Female: $0=$ Male, $1=$ Female gra: 1 = Graduated from High School, $0=$ Did not graduate from High School 흘 Family angra_tm: the number of months to high school graduation or Demograpking never graduated.						

- Create a variable, married, to indicate the transition to first marriage.

```
gen married=0
replace married=mar1 if month==time
```

Table 7. Data after the "married" variable was generated

Name	mar1	time	female	gra	gra_tm	month	married
Tim	0	3	0	1	,	1	0
Tim	0	3	0	1	3	2	0
Tim	0	3	0	1	3	3	0
Sara	1	3	1	0	3	1	0
Sara	1	3	1	0		2	0
Sara	1	3	1	0	3	3	1
Tom	0	5	0	0	5	1	0
Tom	0	5	0	0	5	2	0
Tom	0	5	0	0	5	3	0
Tom	0	5	0	0	5	4	0
Tom	0	5	0	0	5	5	0
Sherry	1	5	1	1	4	1	0
Sherry	1	5	1	1	4	2	0
Sherry	1	5	1	1	4	3	0
Sherry	1	5	1	1	4	4	0
Sherry	1	5	1	1	4	5	1

Noted: mar1: $1=$ married for the first time, $0=$ did not marry for the first time time: the number of months to the first marriage since Wave I interview or having never married

Female: $0=$ Male, $1=$ Female
gra: 1 = Graduated from High School, $0=$ Did not graduate from High School gra_tm: the number of months to high school graduation or having never graduated.

- Create a variable, graduated, to indicate the timing of high school graduation.

```
gen graduated=0
replace graduated = gra if month >= gra_tm
```

Table 8. Data after the "graduated" variable was generated

Name	mar1	time	female	gra	gra_tm	month	married	graduated
Tim	0	3	0	1	3	1	0	0
Tim	0	3	0	1	3	2	0	0
Tim	0	3	0	1	3	3	0	1
Sara	1	3		0	3	1	0	0
Sara	1	3	1	0	3	2	0	0
Sara	1	3		0	3	3	1	0
Tom	0	5	0	0	5	1	0	0
Tom	0	5	0	0	5	2	0	0
Tom	0	5	0	0	5	3	0	0
Tom	0	5	0	0	5	4	0	0
Tom	0	5	0	0	5	5	0	0
Sherry	1	5	1	1	4	1	0	0
Sherry	1	5	1	1	4	2	0	0
Sherry	1	5	1	1	4	3	0	0
Sherry	1	5	1	1	4	4	0	1
Sherry	1	5	1	1	4	5	1	1
Noted:	mar1: 1 = married for the first time, $0=$ did not marry for the first time time: the number of months to the first marriage since Wave I interview or having never married Female: $0=$ Male, $1=$ Female gra: $1=$ Graduated from High School, $0=$ Did not graduate from High School gra_tm: the number of months to high school graduation or having never graduated.							

Analyze data

A. Life table

```
Stata commands:
ltable time mar1 if sub_pop ==1, hazard
ltable time marl if sub_pop ==1
```


Results:

Table 5. Life Table for the Whole Sample

Interval	(in	(hs)	\# of Single Adolescents	\# of Adolescents Married	Lost to Follow-Up	Hazards	Cumulative Marriage Probability
0	\rightarrow	6	13995	54	0	0.0039	0.0039
6	\rightarrow	12	13941	68	0	0.0049	0.0087
12	\rightarrow	18	13873	95	0	0.0069	0.0155
18	\rightarrow	24	13778	128	0	0.0093	0.0247
24	\rightarrow	30	13650	155	0	0.0114	0.0357
30	\rightarrow	36	13495	153	0	0.0114	0.0467
36	\rightarrow	42	13342	232	0	0.0175	0.0632
42	\rightarrow	48	13110	220	0	0.0169	0.079
48	\rightarrow	54	12890	274	0	0.0215	0.0985
54	\rightarrow	60	12616	273	0	0.0219	0.118
60	\rightarrow	66	12343	323	0	0.0265	0.1411
66	\rightarrow	72	12020	290	400	0.0248	0.1622
72	\rightarrow	78	11330	327	7288	0.0435	0.1978
78	\rightarrow	84	3715	25	3682	0.0134	0.2085
84	\rightarrow	90	8	0	6	0	0.2085
90	\rightarrow	96	2	0	1	0	0.2085
96	\rightarrow	102	1	0	1	0	0.2085

Life Table Graph

B. Cox regression without Time varying variables

- Stata commands

```
use "T:\temp\cox.dta", clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
stset time, f(marl)
svy, subpop(sub_pop): stcox female black age_t1 expect
```

- Results:

Survey: Cox regression

Number of strata	$=$	4
Number of PSUs	$=$	132

Number of obs	$=$	14253
Population size	$=$	16629862
Subpop. no. of obs	$=$	13995
Subpop. size	$=$	16297823
Design df	$=$	128
F(4, 125)	$=$	101.86
Prob $>$ F	$=$	0.0000

female	1.740813	. 097873	9.86	0.000	1.557538	1.945654
black	. 5463479	. 0565109	-5.84	0.000	. 4452316	. 6704288
age_t1	1.030068	. 0019299	15.81	0.000	1.026256	1.033894
expect	1.266699	. 0343744	8.71	0.000	1.200477	1.336573

C. Discrete-time Analysis without Time-varying Variables

- Stata commands:

```
use "T:\temp\discrete.dta", clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
char month [omit] 77
xi: svy, subpop(sub_pop): logistic married i.month female black age_t1 expect
```

- Results:

Number of strata	=	4	Number of	obs	$=$	1033582
Number of PSUs	=	132	Populatio	size	=	1209145097
			Subpop.	. of obs	=	1010143
			Subpop. s	ze		1178862615
			Design df		$=$	128
			F (85,	$44)$	=	21.35
			Prob > F		=	0.0000

D. Discrete-time Analysis with a Time-varying Variable

- Stata commands:
use T: \temp\discrete, clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
char month [omit] 77
xi: svy, subpop(sub_pop): logistic married i.month female black age_t1 expect graduated
- Results:

married	Odds RatioLinearized Std. Err.		t	$P>\|t\|$	[95\% Conf. Interval]	
Imonth_1 \|	. 0985339	. 0562077	-4.06	0.000	. 0318707	.3046348
Imonth_2 \|	. 0711091	. 0398916	-4.71	0.000	. 0234342	. 2157742
Imonth_75	1.043885	. 3469749	0.13	0.897	. 5407833	2.015034
Imonth_76	1.187321	. 3974025	0.51	0.609	. 6122765	2.302444
_Imonth_78	. 3518995	. 1629764	-2.26	0.026	. 140746	. 8798348
Imonth_79	. 1739343	. 1292685	-2.35	0.020	. 0399697	. 7569009
Imonth_80	. 6069465	. 3397445	-0.89	0.374	. 2005091	1.837244
Imonth_81 \|	. 3532947	. 2515898	-1.46	0.146	. 0863356	1.445719
Imonth_82 \|	. 1178734	. 1171192	-2.15	0.033	. 016504	. 8418673
female	1.731455	. 0973056	9.77	0.000	1.549238	1.935104
black	. 5521323	. 0567529	-5.78	0.000	. 4505203	. 6766624
age t1	1.028714	. 0019135	15.22	0.000	1.024935	1.032508
-x99प\|	和迷68885	. 0345654	8.67	0.000	1.200305	1.337159
aduated	1.232447	. 1226013	2.10	0.038	1.012242	1.500556

Conclusion

- Event history analysis examines the timing of an event and allows researchers to test factors that may lead to the occurrence of the event.
- For Life Table and Cox Regression, there is a need to construct the variables indicating when the event and its predicators occurred. For discrete-time analysis, the data need to be transformed into person-period format.
- Discrete-time analysis is more flexible than Cox Regression.
- The dummy variables for time can delineate the magnitude of hazards at each time point.
- Time-varying variables can be easily included in the models
- People who know about logistic regression can easily understand discrete-time analysis.
- For more information on event history analysis
- Dr. Alfred Demaris has written a book, "Regression With Social Data: Modeling Continuous and Limited Response Variables". This book provides detailed information about assumptions and estimations of several survival models.
- Dr. Judith Singer and Dr. John Willett have published a book, called "Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence". Data sets, computer programs, outputs and PowerPoint slides for the examples used in this book can be found at http://gseacademic.harvard.edu/alda/
- University of California at Los Angeles has helpful information on using SAS, Stata, and SPSS for conducting event history analysis at http://www.ats.ucla.edu/stat/seminars/.
- Dr. David Garson has provided excellent documents on Life Table, Cox Regression, and Event History at http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm.

