Introduction to Event History Analysis

Hsueh-Sheng Wu CFDR Workshop Series February 21, 2022

Outline

- What is event history analysis?
- Event history analysis steps
- Create data for event history analysis
 - Data for different analyses
 - The dependent variable in Life Table analysis and Cox Regression
 - Reshape data for Discrete-time analysis
- Analyze data
 - Life Table
 - Cox Regression without time-varying variables
 - Discrete-time without time-varying variables
 - Discrete-time with time-varying variables
- Conclusion

BGSU

What is event history analysis?

- Event history analysis is a "time to event" analysis, that is, we follow subjects over time and observe at which point in time they experience the event of interest
- Event history analysis can establish the causal relation between independent variables and the dependent variable because of a clear temporal order of independent variables and the dependent variable.
- The data used for event history analysis can include all information from respondents that drop out of the study later.
- Both SAS and Stata can be used to conduct event history analysis, but Stata allows you to better take into account complex survey design Family and Demographic Research

What is event history analysis (continued)?

Examples:

Brown, Bulanda, & Lee (2012) Transitions Into And Out Of Cohabitation In Later Life. Journal Of Marriage And Family, 74, 774-793

Kuhl, Warner, & Wilczak (2012) Adolescent Violent Victimization And Precocious Union Formation, Criminology,50,1089-1127

Longmore, Manning, & Giordano (2001) Preadolescent Parenting Strategies And Teens' Dating And Sexual Initiation: A Longitudinal Analysis. Journal Of Marriage And Family, 322-335

Manning & Cohen (2012) Premarital Cohabitation And Marital Dissolution: An Examination Of Recent Marriages, Journal Of Marriage And Family, 74, 377-387

What is event history analysis (continued)?

Figure 1. Different types of censoring

What is event history analysis (continued)

- A is fully censored on the left
- B is partially censored on the left
- C is complete
- D is censored on the right within the study period
- E is censored on the right
- F is completely censored on the right
- G represents a duration that is left and right censored

BGSU

STEPS for event history analysis

- What is the research question?
- Locate and select variables
- Establish analytic sample
- Recode variables
- Create timing data for event history analysis
 - Life Tables and Cox Regression
 - Discrete-time analysis
- Describe and Analyze data
 - Life Table
 - Cox regression
 - Discrete-time

BGSU

Family and Demographic Research

An example of conducting event history analysis

- Research Question: What factors are associated with the timing of first marriage ?
- Variables:
 - Dependent variable: Timing of first marriage
- Predictors:
 - Gender (male/female),
 - Race (black/non-black)
 - Age (continuous)
 - Expectation of marriage at Wave I (continuous)
 - High school graduation (yes/no)
- Weight variables:
 - Region: (West, Midwest, South, and Northeast)
 - Schools (Range 1 to 371)
 - Individual weights (Range 16.3183 to 6649.3618)
- An indicator of whether adolescents are included in the analytic sample – sub_pop (yes/no) Family and Demographic Research

Analytic Sample

- The Sample Size:
 - 20, 745 adolescents participated in Wave 1 interview
 - 15, 170 adolescents provided information on marriages at Wave III interview
 - 14,253 adolescents has valid information on the timing of first marriage and weight variables at Wave I
 - 2,855 have married for the first time before Wave III interview
- Respondents who had first marriage before Wave III interview but were excluded from the analytic sample
 - 54 married before Wave I interview
 - 2 married before Age 14
 - 34 had first marriage, but did not have graduation time
- The analytic sample
 - Adolescents with valid responses to marital status, all the predictor variables, and weight variables. The final N = 13, 995.

EFamily and Demographic Research

Create data for event history analysis

Three different data formats for different analysis

Table 1. Data for analyses not involving the examination the timing of first marriage

Name	Married	Female	High School Graduation
Tim	0	0	1
Sara	1	1	0
Tom	0	0	0
Sherry	1	1	1
Note:			

Married: 1 = Married; 0 = Unmarried

Female: 1 = Female; 0 = Male

Family High School Graduation: 1 = Graduated from High School; 0 = Did not graduate from High School Chesearch

 Table 2. Data for Life Table and Cox Regression, and the timing of independent and dependent variables are included in the data file.

Name	Married	Time (in months from W1) to getting married or being censored (reaching the W3 having never married)	Female	High School Graduation	Time (in months from W1 interview) to graduating from high school or being censored (i.e., reaching the W3 having not
Tim	0	3	0	1	3
Sara	1	3	1	0	3
Tom	0	5	0	0	5
Sherry	1	5	1	1	4

Note:

Married: 1 = Married; 0 = Unmarried

Female: 1 = Female; 0 = Male

High School Graduation: 1 = Graduated from High School; 0 = Did not graduate from High School

BGSU

Semographic Research

Name	Month	Married	Female	High School Graduation
Tim	1	0	0	0
	2	0	0	0
	3	0	0	1
Sara	1	0	1	0
	2	0	1	0
	3	1	1	0
Tom	1	0	0	0
	2	0	0	0
	3	0	0	0
	4	0	0	0
	5	0	0	0
Sherry	1	0	1	0
	2	0	1	0
	3	0	1	0
	4	0	1	1
	5	1	1	1

Table 3. Data for Discrete Time Analysis, and the timining of independent and dependent variables are transformed into person-time data

Note:

Married: 1 = Married; 0 = Unmarried

Female: 1 = Female; 0 = Male

High School Graduation: 1 = Graduated from High School; 0 =

Dependent Variable in Life Table and Cox Regression

Create the date indicator for:

```
- Timing of first marriage
gen marriage_t1 = ym(form_y1, form_m1)
label variable marriage_t1 "century month"
for getting married for the first time"
```

- Wave I interview
gen interview_t1 = ym(iyear, imonth)
label variable interview t1 "time for t1 interview"

```
- Wave III interview
gen interview_t3 = ym(iyear3, imonth3)
label variable interview t3 "time for t3 interview"
```

- Calculate the number of months to first marriage since Wave I interview
 gen time1 = marriage_t1 interview_t1 if (marriage_t1 ~=. & interview_t1~=.)
 label variable time1 "time for those got married"
- Calculate the number of months between Wave I and Wave III interview gen time2 = interview_t3-interview_t1 label variable time2 "time for those did not get married"

```
    Calculate the number of months to first marriage or censoring
gen time =.
label variable time "timing of the first marriage"
replace time = time1 if time1 ~=. & mar1 ==1
replace time = time2 if mar1 ==0
replace time =. if time1 <0</li>
```

```
EFamily and Demographic Research
```

Reshape data for Discrete Time Analysis

Use the data created for Cox Regression •

use "t:\temp\cox.dta", clear

Name	mar1	time	female	gra	gra_tm			
Tim	0	3	0	1	3			
Sara	1	3	1	0	3			
Tom	0	5	0	0	5			
Sherry	1	5	1	1	4			
Noted:	mar1: 1 = married for the first time, 0 = did not marry for the first time							
	time: the n since Wav	umber of m e I interviev	nonths to t w or having	he first m g never n	harriage narried			
	Female: 0	= Male, 1 =	= Female					
EFamily and	gra: 1 = Gr gra_tm: the graduation	raduated fro e number c or having	om High S of months t never grad	chool, 0 to high so duated.	= Did not hool			

 Table 4. Data for Cox regression

Expand each observation into multiple observations, depending on the number of months that each original observation needs to get married for the first time or become censored.

expand time

Name	mar1	time	female	gra	_gra_tm				
Tim	0	3	0	1	3				
Tim	0	3	0	1	3				
Tim	0	3	0	1	3				
Sara	1	3	1	0	3				
Sara	1	3	1	0	3				
Sara	1	3	1	0	3				
Tom	0	5	0	0	5				
Tom	0	5	0	0	5				
Tom	0	5	0	0	5				
Tom	0	5	0	0	5				
Tom	0	5	0	0	5				
Sherry	1	5	1	1	4				
Sherry	1	5	1	1	4				
Sherry	1	5	1	1	4				
Sherry	1	5	1	1	4				
Sherry	1	5	1	1	4				
Noted:	mar1: 1 =	mar1: $1 = married$ for the first time, $0 = did not$							

Table 5. Data after using Stata "expand" command

time: the number of months to the first marriage since Wave I interview or having never married Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not Gra_tm: the number of months to high s Family and graduation or having never graduated. Demographic Research gra_tm: the number of months to high school

• Sort the data by the ID variable. Generate a variable "month" to indicate which month to which the observation now belongs.

sort aid
by aid: gen month=_n

Name	mar1	time	female	gra	_gra_tm	month
Tim	0	3	0	1	3	1
Tim	0	3	0	1	3	2
Tim	0	3	0	1	3	3
Sara	1	3	1	0	3	1
Sara	1	3	1	0	3	2
Sara	1	3	1	0	3	3
Tom	0	5	0	0	5	1
Tom	0	5	0	0	5	2
Tom	0	5	0	0	5	3
Tom	0	5	0	0	5	4
Tom	0	5	0	0	5	5
Sherry	1	5	1	1	4	1
Sherry	1	5	1	1	4	2
Sherry	1	5	1	1	4	3
Sherry	1	5	1	1	4	4
Sherry	1	5	1	1	4	5
Noted:	mar1: 1 =	married for	or the first ti	me, 0 =	did not marr	y for the
	first time					

Table 6. Data after the "month" variable was generated

time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not graduate from High School

Family angra_tm: the number of months to high school graduation or having never graduated. Demographic Research

16

Create a variable, married, to indicate the transition to first marriage.

gen married=0

replace married=mar1 if month==time

Table	7. Data	after the	"married"	variable	was generated	

Name	mar1	time	female	gra	_gra_tm	month	married
Tim	0	3	0	1	3	1	0
Tim	0	3	0	1	3	2	0
Tim	0	3	0	1	3	3	0
Sara	1	3	1	0	3	1	0
Sara	1	3	1	0	3	2	0
Sara	1	3	1	0	3	3	1
Tom	0	5	0	0	5	1	0
Tom	0	5	0	0	5	2	0
Tom	0	5	0	0	5	3	0
Tom	0	5	0	0	5	4	0
Tom	0	5	0	0	5	5	0
Sherry	1	5	1	1	4	1	0
Sherry	1	5	1	1	4	2	0
Sherry	1	5	1	1	4	3	0
Sherry	1	5	1	1	4	4	0
Sherry	1	5	1	1	4	5	1
Noted:	mar1: 1 =	married for	the first t	ime, 0 = d	lid not marr	y for the	first time
	time: the n	umber of m	onths to t	he first m	arriane sind	e Wave	Linterview

time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not graduate from High School

gra_tm: the number of months to high school graduation or having never graduated.

 Create a variable, graduated, to indicate the timing of high school graduation.

gen graduated=0
replace graduated = gra if month >= gra tm

married graduated month Name mar1 time female gra gra tm Tim Tim Tim Sara Sara Sara Tom Tom Tom Tom Tom Sherry Sherry Sherry Sherry Sherry

Table 8. Data after the "graduated" variable was generated

Noted: mar1: 1 = married for the first time, 0 = did not marry for the first time

time: the number of months to the first marriage since Wave I interview or having never married

Female: 0 = Male, 1 = Female

gra: 1 = Graduated from High School, 0 = Did not graduate from High School

gra_tm: the number of months to high school graduation or having never graduated.

Analyze data

A. Life table

Stata commands: ltable time mar1 if sub_pop ==1, hazard ltable time mar1 if sub pop ==1

Results:

Table 5. Life Table for the Whole Sample

Interval (in months)			# of Single Adolescents	# of Adolescents Married	Lost to Follow-Up	Hazards	Cumulative Marriage Probability
Ο	\rightarrow	6	13995	54	0	0.0039	0.0039
6	\rightarrow	12	13941	68	0	0.0049	0.0087
12	\rightarrow	18	13873	95	0	0.0069	0.0155
18	\rightarrow	24	13778	128	0	0.0093	0.0247
24	\rightarrow	30	13650	155	0	0.0114	0.0357
30	\rightarrow	36	13495	153	0	0.0114	0.0467
36	\rightarrow	42	13342	232	0	0.0175	0.0632
42	\rightarrow	48	13110	220	0	0.0169	0.079
48	\rightarrow	54	12890	274	0	0.0215	0.0985
54	\rightarrow	60	12616	273	0	0.0219	0.118
60	\rightarrow	66	12343	323	0	0.0265	0.1411
66	\rightarrow	72	12020	290	400	0.0248	0.1622
72	\rightarrow	78	11330	327	7288	0.0435	0.1978
78	\rightarrow	84	3715	25	3682	0.0134	0.2085
84	\rightarrow	90	8	0	6	0	0.2085
90	\rightarrow	96	2	0	1	0	0.2085
96	\rightarrow	102	1	0	1	0	0.2085

- BGSU
- E Family and Demographic Research

Life Table Graph

E Family and Demographic Research

B. Cox regression without Time varying variables

•Stata commands

```
use "T:\temp\cox.dta", clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
stset time, f(mar1)
svy, subpop(sub_pop): stcox female black age_t1 expect
```

• Results:

Survey: Cox regression

Numbe	r of	stra	ta =	4		Number of	obs =	14253
Numbe	r of	PSUs	=	132		Populatio	n size =	16629862
						Subpop. n	o. of obs =	13995
						Subpop. s	ize =	16297823
						Design df	=	128
						F(4,	125) =	101.86
						Prob > F	=	0.0000
				Linearized				
		_t	Haz. Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
		+	1 740012		0 06	0 000	1 667620	1 045654
	Lema	are i	1./40013	.097073	9.00	0.000	1.557556	1.945654
	bla	ack	.5463479	.0565109	-5.84	0.000	.4452316	.6704288
	age	_t1	1.030068	.0019299	15.81	0.000	1.026256	1.033894
	expe	ect	1.266699	.0343744	8.71	0.000	1.200477	1.336573

C. Discrete-time Analysis without Time-varying Variables

• Stata commands:

```
use "T:\temp\discrete.dta", clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
char month [omit] 77
xi: svy, subpop(sub_pop): logistic married i.month female black age_t1 expect
```

• Results:

Survey: Logistic regression								
Number of strat	:a =	4		Number of	obs =	1033582		
Number of PSUs	=	132		Population	size =	1209145097		
				Subpop. no	. of obs =	1010143		
				Subpop. si	ze =	1178862615		
				Design df	=	128		
				F(85,	44) =	21.35		
				Prob > F	=	0.0000		
		Linearized						
married	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]		
Imonth 1	.0855008	.0477686	-4.40	0.000	.0283055	.2582668		
Imonth 2	.0622853	.0339932	-5.09	0.000	.0211541	.1833904		
Imonth 75	1.04427	.3475159	0.13	0.897	.5405591	2.017355		
Imonth 76	1.187808	.3981339	0.51	0.609	.6119474	2.30557		
_Imonth_78	.3509662	.1625097	-2.26	0.025	.1404001	.8773308		
_Imonth_79	.1736188	.1291074	-2.35	0.020	.0398639	.7561599		
_Imonth_80	.6049959	.3388633	-0.90	0.371	.1997271	1.832601		
Imonth_81	.3521969	.2508042	-1.47	0.145	.0860692	1.441196		
Imonth 82	.1178069	.1170397	-2.15	0.033	.0164983	.8412027		
female	1.745988	.0986846	9.86	0.000	1.561246	1.95259		
5 Lack m	.5448028	.0566048	-5.85	0.000	.4435634	.6691493		
age_t1	1.030225	.0019416	15.80	0.000	1.026391	1.034075		
<u></u>	10-02-62-pch	IC Researc	ch_8.71	0.000	1.201722	1.338792		

D. Discrete-time Analysis with a Time-varying Variable

```
    Stata commands:
use T:\temp\discrete, clear
svyset psuscid1 [pweight = gswgt1], strata(region1)
char month [omit] 77
xi: svy, subpop(sub_pop): logistic married i.month female black age_t1 expect
graduated
```

• Results:

S	urvey: Logist	cic regression	n				
N	umber of stra	ata =	4		Number of d	obs =	1033582
N	umber of PSUs	s =	132		Population	size =	1209145097
					Subpop. no	. of obs =	1010143
					Subpop. si:	ze =	1178862615
					Design df	=	128
					F(86,	43) =	21.55
					Prob > F	=	0.0000
			Linearized				
	married	Odds Ratio	Std. Err.	t t	P> t	[95% Conf.	. Interval]
	Imonth 1	.0985339	.0562077	-4.06	0.000	.0318707	.3046348
	Imonth 2	.0711091	.0398916	-4.71	0.000	.0234342	.2157742
	:						
	_Imonth_75	1.043885	.3469749	0.13	0.897	.5407833	2.015034
	_Imonth_76	1.187321	.3974025	0.51	0.609	.6122765	2.302444
	_Imonth_78	.3518995	.1629764	-2.26	0.026	.140746	.8798348
	_Imonth_79	.1739343	.1292685	-2.35	0.020	.0399697	.7569009
	Imonth 80	.6069465	.3397445	-0.89	0.374	.2005091	1.837244
	Imonth 81	.3532947	.2515898	-1.46	0.146	.0863356	1.445719
	Imonth 82	.1178734	.1171192	-2.15	0.033	.016504	.8418673
	female	1.731455	.0973056	9.77	0.000	1.549238	1.935104
	black	.5521323	.0567529	-5.78	0.000	.4505203	.6766624
	age t1	1.028714	.0019135	15.22	0.000	1.024935	1.032508
2.		V 2n266885	.0345654	8.67	0.000	1.200305	1.337159
	graduated	1.232447	.1226013	2.10	0.038	1.012242	1.500556
-	<u>a</u>)ema	oraphic	Research				

23

Conclusion

- Event history analysis examines the timing of an event and allows researchers to test factors that may lead to the occurrence of the event.
- For Life Table and Cox Regression, there is a need to construct the variables indicating when the event and its predicators occurred. For discrete-time analysis, the data need to be transformed into person-period format.
- Discrete-time analysis is more flexible than Cox Regression.
 - The dummy variables for time can delineate the magnitude of hazards at each time point.
 - Time-varying variables can be easily included in the models
 - People who know about logistic regression can easily understand discrete-time analysis.
- For more information on event history analysis
 - Dr. Alfred Demaris has written a book, "Regression With Social Data: Modeling Continuous and Limited Response Variables". This book provides detailed information about assumptions and estimations of several survival models.
 - Dr. Judith Singer and Dr. John Willett have published a book, called "Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence". Data sets, computer programs, outputs and PowerPoint slides for the examples used in this book can be found at http://gseacademic.harvard.edu/alda/
 - University of California at Los Angeles has helpful information on using SAS, Stata, and SPSS for conducting event history analysis at http://www.ats.ucla.edu/stat/seminars/.
 - Dr. David Garson has provided excellent documents on Life Table, Cox Regression, and Event History at http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm.

